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Abstract
We prove the existence of the constrained efficient Miyazaki (1977)-Wilson
(1977)-Spence (1978) equilibrium in competitive markets with adverse selec-
tion when the distribution of unobservable types is continuous. Our exis-
tence proof applies under extremely general assumptions about individual
preferences. When we restrict preferences to have the widely-used-in-the-
selection-markets-literature quasilinear form, we characterize the properties
of this equilibrium by developing a simple and computationally efficient nu-
merical method for constructing it. Applying this method, we show in a nat-
ural setting how one would compute the equilibrium allocation, potentially
facilitating empirical work using the MWS equilibrium. We illustrate this em-
pirical application in the context of policy interventions and show that the wel-
fare implications of a coverage mandate critically hinge on whether the mar-
ket implements a constrained efficient allocation like the MWS equilibrium or
a constrained inefficient allocation like in Azevedo and Gottlieb (2017).
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1 Introduction

Economists have long understood that private information can lead to adverse-
selection-driven pathologies in competitive markets. Adverse selection typically
prevents first-best outcomes from being achieved. Nonetheless, depending on
market dynamics, markets may still achieve second-best (i.e., constrained efficient)
outcomes. Indeed, the so-called Miyazaki (1977)-Wilson (1977)-Spence (1978) (hence-
forth MWS) equilibrium concept, used widely in the insurance market literature in
models with small type spaces, predicts a constrained efficient allocation. The first
contribution of this paper is to extend the MWS equilibrium concept to richer type
spaces. Specifically, we prove the existence of the MWS equilibrium in models
with continuous one-dimensional type spaces under general assumptions about
preferences.

The second contribution of this paper is to characterize that equilibrium. Specif-
ically, under the assumption of quasilinear preferences,1 we develop a simple and
efficient algorithm for computing the MWS equilibrium with a continuum of types.
This algorithm—which amounts to solving a sequence of straightforward differ-
ential equations—demonstrates the value of our continuous type extension of the
MWS equilibrium concept: much as in the optimal income tax literature following
Mirrlees (1971), it is easier, both theoretically and computationally, to characterize
equilibrium allocations in continuous type spaces than it would be to do so in large
but finite type spaces. As such, our algorithm thereby facilitates what is, to the best
of our knowledge, the first qualitative (and quantitative) characterization of MWS
equilibrium in rich type spaces and opens the door to empirical work comparing
the applicability of this constrained-efficient concept to other concepts such as the
one developed in Azevedo and Gottlieb (2017).

If the market dynamics in a particular market make the MWS a good predictor
for market outcomes, then our construction is of direct interest. Independent of
whether it ends up being a good predictor for market outcomes, our construction
is also important for analyzing policy interventions. For example, the equilibrium
concepts described in Azevedo and Gottlieb (2017) and Einav et al. (2010a) are
commonly used to evaluate the welfare effects of policy interventions, and both

1This is a standard assumption in the modern literature (e.g., Einav et al. (2010a, 2013), Handel
(2013), Weyl and Veiga (2017)) and significantly less restrictive in an insurance context than in an
optimal income tax context.
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of these equilibrium concepts often predict market outcomes that fail to be con-
strained efficient. As such, the overall welfare effects of policy interventions con-
flate two conceptually distinct effects: (1) welfare changes that arise because of the
interventions’ interactions with the information frictions inherent in the economic
environment, and (2) welfare changes that arise because of the intervention’s in-
teraction with the inefficiencies caused by the market dynamics underlying the
equilibrium concept. Our construction of the MWS equilibrium mutes the second
source and, thus, can be used to decompose these two sources of welfare effects.

We set up and describe the MWS equilibrium in Section 2, prove that it ex-
ists in Section 3, and describe a computational algorithm for it in Section 4. We
then demonstrate the policy-relevance of our results by contrasting the welfare ef-
fects of coverage mandates in insurance markets with constrained efficient MWS
equilibrium outcomes with the welfare effects in the Azevedo and Gottlieb (2017)
equilibrium. Specifically, in Section 5, we describe a plausibly-calibrated model of
an insurance market and compute and illustrate both the MWS and AG equilibria
in the absence of a mandate. Consistent with the fact that the AG equilibrium is
not constrained efficient, we show that total welfare (as measured by consumer
surplus) is roughly 20% higher in the MWS equilibrium. We then re-compute the
equilibria in the presence of a mandate that requires insurance policies to cover
at least M% of expected losses. Such a mandate has large welfare effects in AG
equilibrium: it increases consumer surplus by an order of 1% for M = 50% and by
over 25% as M approaches 100%. In contrast, the welfare gains from such a man-
date in the MWS equilibrium are only about 10% as large. Hence, our example
indicates that the majority—on the order of 90%—of the welfare gains from im-
posing a mandate in the AG equilibrium world are attributable to the fact that the
AG equilibrium concept is not constrained efficient, and a mandate improves wel-
fare largely by moving the equilibrium allocation closer to the constrained-efficient
frontier. Section 6 offers some brief conclusions.

2 Setup and definitions

We aim to extend the previous literature employing the MWS equilibrium concept
(e.g., Spence (1978), Netzer and Scheuer (2014), Picard (2014, 2019)), all of which
considers models with a discrete number of types, to allow a continuum of types.
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“Types” differ in their privately known cost c ∈ [c, c̄], 0 < c < c̄ < ∞. Our interest
is in the case where c has a continuous distribution F over [c, c̄] with density f
uniformly bounded by 0 < f ≤ f ≤ f̄< ∞. Our existence proof for this continuous
type case builds on sequences of finite-type approximations.

A type c’s individual allocation is a quantity-price pair (q(c), p(c)) ≡ ~A(c); her
associated utility is V(q(c), p(c); c). A firm’s profit from selling (q, p) to type c is
Π(q, p; c) = p− cq. A market allocation (or simply allocation) is the function ~A(·)
mapping types c into their individual allocations ~A(c).

We allow for very general consumer preferences, which are, in particular, more
general than the commonly-used assumption of quasi-linear preferences (employed,
e.g., in Einav et al. (2010a, 2013), Handel (2013), Weyl and Veiga (2017)). Fol-
lowing Spence (1978), we assume that utility is twice differentiable, increasing
and concave in coverage (Vq > 0 and Vqq < 0), decreasing in price (Vp < 0),
and strictly quasiconcave in (q, p) for each c. We assume that |Vc| < k < ∞
uniformly; it is then without loss of generality to assume that Vc < ξ < 0; we
make this assumption henceforth.2 By strict quasiconcavity, the marginal rate of
substitution, MRS = −Vq/Vp is positive and decreasing to the northeast along
indifference curves in (q, p) space. We additionally assume the single crossing
property—that MRS is increasing in c—and that MRS is uniformly bounded by
MRS < MRS < MRS.3 Finally, we assume that for each type c there exists a finite
and unique “full insurance” level q∗(c) satisfying MRS(q∗, q∗c; c) = c.

2.1 MWS equilibrium in a two-type setting

An example of the general model is the classic two-type model of Rothschild and
Stiglitz (1976), in which preferences take the expected utility form V(q, p; c) = (1−
c)u(w− p)+ cu(w− p− l + q), p is an insurance premium, q is the gross indemnity
in the event of an accident which causes a financial loss of size l out of initial wealth
w, and c is the probability of experiencing such a loss. For readers unfamiliar with
the MWS equilibrium concept, we reprise here the Rothschild-Stiglitz equilibrium
candidate (henceforth “RS allocation”) and the MWS equilibrium allocations in

2If a utility function Ṽ does not satisfy this property, the cardinally equivalent V = Ṽ − (k + ξ)c
does.

3Given the bounded type space, this last assumption is essentially without loss of generality.
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this classic setting.4

The pair (αL, αH) in Figure 1 depicts the RS allocation. In this allocation, the
high-cost type receives contract αH which provides full insurance (here, unit cov-
erage) at her type-specific actuarially fair price (as represented by the actuarially
fair line ΠH in the diagram). The low-cost type receives the contract αL which pro-
vides less than full coverage at her type-specific actuarially fair price. Specifically,
the L type gets as much coverage as is possible without violating the incentive
compatibility constraint that H-types do not prefer αL to αH (illustrated in the fig-
ure by the fact that αL lies on the H-type indifference curve ICH through αH).

Figure 1: Illustrating the difference between the RS allocation and MWS equilib-
rium allocation in a canonical two-type model.
Lines ΠL and ΠH depict the type-specific actuarially fair contract pairs (q, p) for the L and H types,
respectively. ICL and IC′L (respectively, ICH and IC′H) depict L-type (respectively, H-type) indiffer-
ence curves. The pair (αL, αH) depicts the standard Rothschild-Stiglitz (RS) equilibrium allocation.
The incentive compatible allocation (βL, βH) Pareto dominates the RS allocation, and is resource
feasible when the proportion of high-cost types is sufficiently low; when such an allocation ex-
ists, the MWS equilibrium will diverge from the RS equilibrium and will involve Pareto-improving
cross-subsidies from low- to high-cost types.
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Alternative pairs of contracts like (βL, βH) in Figure 1 are incentive compatible
and Pareto dominate (αL, αH). Since βL lies above the low costs‘ individual zero
profit line, such allocations (βL, βH) will also be weakly profitable for firms, on

4See Mimra and Wambach (2014) for a more detailed discussion.
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average, if the proportion of high-cost types is sufficiently small. In other words,
there may exist incentive compatible and resource feasible allocations which in-
volve cross subsidies from the low- to high-cost types and that are Pareto-improving
relative to the RS allocations. When such Pareto-improving contracts exist, the
MWS equilibrium diverges from the RS allocation. Specifically, relative to the RS
allocation, the MWS equilibrium implements any and all Pareto-improving cross-
subsidies from L to H types, resulting in the best-for-L contract pair among the
(information and resource) constrained efficient allocations.

There is a rich literature providing formal equilibrium microfoundations for the
MWS equilibrium in the two-type case. The eponymous papers (Miyazaki (1977)-
Wilson (1977)-Spence (1978)) describe a quasi-game-theoretic “anticipatory” equi-
librium notion. This notion posits that firms who are considering “cream-skimming”
deviations (which attract only the profitable low-cost types) will anticipate that in-
cumbent firms will then exit the market, leaving them also attracting the high-cost
types and becoming unprofitable. Netzer and Scheuer (2014) provide a modern
game-theoretic formalization of this notion. Mimra and Wambach (2019a) formu-
late a formal dynamic game with both anticipation and reactionary contract offers
and show that the MWS allocation is an equilibrium of this game. Picard (2014)
introduces into the basic Rothschild and Stiglitz (1976) model the possibility that
firms can endogenously choose to become mutual insurers, and shows that this
leads to the MWS equilibrium allocation in a static game among insurers.5

2.2 MWS equilibrium with continuous types

This section builds up to a definition of the MWS equilibrium in the continuum of
types case, as outlined above. To that end, we first provide an alternative formu-
lation of the MWS equilibrium in the finite type case considered in Spence (1978),
adapted to our notation. Consider a discrete set of types c1 < c2 < · · · < cn with

5Intuitively, introducing mutual firms microfounds the “anticipatory” concept because mutual
firms pay ex-post dividends if they are profitable and levy ex-post supplemental premiums if they
end up being unprofitable. “Cream-skimming” deviations would render mutuals unprofitable,
leading to the anticipation of supplemental premiums by high-cost types, making the mutual firm
less appealing to high-cost types. This replicates—without a second stage where the incumbent
firms make an additional move—the anticipation that unprofitable firms will exit the market.
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probability masses f (ci) > 0, ∑n
i=1 f (ci) = 1.6 Spence (1978)’s approach defines a

set of reservation utilities V̄(ci) for each i recursively. Specifically, define:

V̄(ci) ≡ max
{~A(cj)}j≥i

V(~A(ci); ci) (1)

subject to

V(~A(cj); cj) ≥ V(~A(ck); cj) ∀ j, k ≥ i and (2)
n

∑
j=i

Π(~A(cj); cj) f (cj) ≥ 0 and (3)

V(~A(cj); cj) ≥ V̄(cj) ∀j > i. (4)

Inequalities (2) and (3) are, respectively, the standard incentive and (aggregate)
break-even or zero-profit constraints. Constraints (4) are minimum utility con-
straints. The minimum utility values V̄ are defined recursively, and, intuitively
speaking, reflect the “outside option” utility available to each type.7 The outside
option V̄(ci) for type i defined in program (1)-(4) is precisely the utility that i types
would get if they formed a sub-economy consisting only of i- and all higher-cost
types. Spence (1978) shows that this program can be rationalized by an anticipa-
tory cream-skimming argument: if the minimum utility constraint for a particular
type m were violated, then a new (or deviating) firm could offer the menu of con-
tracts close to the one solving the program (1)-(4) for the m type that would be
profitable if it attracts the m type and safe even if it attracts all j > m types.

An allocation {~A(cj)}n
j=1 solving the lowest-cost type’s sub-problem is called

the MWS equilibrium allocation. Once reservation utilities V̄(ci) are known, com-
puting {~A(cj)}n

j=1 is straightforward. In the finite-type case, characterizing the
reservation utilities V̄i ≡ V̄(ci) is also conceptually straightforward, since it can
be done recursively. Computing an allocation given a set of reservation utilities
remains straightforward when we move to the continuum of types case, but, be-
cause recursion is impossible in that case, computing those reservation utilities
raises new conceptual challenges.

6Note that indices i in Spence (1978)’s original formulation are inversely related to the cost ci.
We flip this dependence for a more consistent notation throughout the paper.

7Note that constraint (4) is null for i = n, so V̄(cn) is well-defined. As such, constraint (4) is
well defined for i = n− 1, and V̄(cn−1) is also well-defined. Similarly for V̄(cn−2), V̄(cn−3), and so
forth.
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Towards overcoming these challenges, it is useful to reformulate the programs
(1)-(4) defining the reservation utilities in a non-recursive way. To that end, ob-
serve that the resource constraints (3) will always bind. The reservation utili-
ties can therefore alternatively be characterized (dually) as the unique function
V̄ : {c1, · · · , cn} → R with the property that, for all i,

0 = max
{~A(cj)}j≥i

n

∑
j=i

Π(~A(cj); cj) f (cj) (5)

subject to

V(~A(cj); cj) ≥ V(~A(ck); cj) ∀ j, k ≥ i and (6)

V(~A(cj); cj) ≥ V̄(cj) ∀j ≥ i. (7)

The dual approach generalizes naturally and as follows to the continuum of
types case.8

Definition 1. A MWS equilibrium is an allocation ~A∗ that solves

max
{~A}

∫ c̄

c=c
Π(~A(c); c)dF(c) (8)

subject to

V(~A(c); c) ≥ V(~A(c′); c) ∀ c, c′ ≥ c and (9)

V(~A(c); c) ≥ V̄(c) ∀c ≥ c (10)

for some function V̄ on the set of types for which, for every type ĉ,

0 =max
{~A}

∫ c̄

c=ĉ
Π(~A(c); c)dF(c) (11)

subject to

V(~A(c); c) ≥ V(~A(c′); c) ∀ c, c′ ≥ ĉ and (12)

V(~A(c); c) ≥ V̄(c) ∀c ≥ ĉ. (13)

It is important to note that a MWS equilibrium is not the solution to one opti-
mization problem, but to a family of optimization problems that interrelate to each

8For finite types, this definition corresponds to the standard notion used in the insurance litera-
ture (Spence (1978), Netzer and Scheuer (2014)).
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other via the minimum utility constraints (13). Therefore, existence of the resulting
allocation is non-trivial.

Conditional on knowing V̄, it is straightforward to solve the optimization prob-
lem (8) - (10) and derive the equilibrium allocation. We therefore focus on the
characterization of V̄ in the existence proof and constructions that follow in the
subsequent sections.9

3 Equilibrium existence

3.1 Discretizing the cost type distribution F

To prove the existence of an MWS equilibrium in the continuum of types case, we
consider an increasingly fine sequence of finite approximations to the distribution
of types F. As in Spence (1978), there is a well-defined MWS equilibrium set of
allocations for each such discretization.

For each n ∈N, define the set of types Cn

Cn = {cn
0 , cn

1 , · · · , cn
k , · · · , cn

2n+1} (14)

=

{
c, c +

(c̄− c)
2n , · · · , c + k

(c̄− c)
2n , · · · , c̄

}
(15)

and the corresponding cdf Fn via:

Fn(c) = min
c′∈Cn,c′≥c

F(c).

The distribution Fn effectively ‘collapses’ all types in an interval [cn
k , cn

k+1) under F
onto the point cn

k , so that the probability mass at cn
k is (for each 0 ≤ k ≤ 2n) given

by:
f n(cn

k ) = F(cn
k+1)− F(cn

k ).

9Note that although we refer to the allocation described above as an MWS “equilibrium”, it
is beyond the scope of our paper to provide explicit microfoundations (e.g., game theoretic) for
this equilibrium. It is not hard to show, however, that the anticipatory logic described in Spence
(1978) to the many-finite-type case can be readily extended to the continuum-of-types case, and
we conjecture that the mutual-firm microfoundations of this anticipatory logic in Picard (2014) (viz
footnote 5) and the many-finite-type extension in Picard (2019) extends as well.
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Define

C =
⋃

n∈N

Cn (16)

as the set of all types which appear in any discretization.
As in Spence (1978), for each discretization Fn, n ∈ N, an MWS equilibrium

exists. In particular, there is a well-defined and unique set of reservation utilities
{V̄n(cn

k )}k=0,··· ,2n+1 that are consistent with Definition 1 of the MWS equilibrium
for each n ∈ N. Fixing any type ĉ ∈ Cn and given the (recursively definable)
reservation utilities V̄n(cn

k ) for all cn
k ∈ Cn with cn

k ≥ ĉ, we refer to the mathematical
program characterized by (11)-(13) “the MWS sub-problem for type ĉ”. Define
~An(c; ĉ) as the allocation of type c in a given solution to the MWS sub-problem for
type ĉ in discretization n (which is defined only if c, ĉ ∈ Cn and c ≥ ĉ). A key object
in the proof that follows will be V̂n(ĉ, T), which we define now.

Definition 2. For ĉ ∈ Cn and any T ≥ 0, define

V̂n(ĉ, T) ≡ max
{~An(c;ĉ)}c∈[ĉ,c̄]∩Cn

V(~An(c; ĉ); c) (17)

subject to

V(~An(c; ĉ); c) ≥ V(~An(c′; ĉ); c) ∀c, c′ ≥ ĉ with c, c′ ∈ Cn and (18)

V(~An(c; ĉ); c) ≥ V̄n(c) ∀c ≥ ĉ with c ∈ Cn and (19)

∑
c∈[ĉ,c̄]∩Cn

Π(~An(c; ĉ); c) f n(c) ≥ −T. (20)

When T = 0, (17)-(20) coincides with the primal approach to the MWS equilib-
rium (i.e., (1)-(4)). Hence, V̂n(ĉ, 0) = V̄n(ĉ). When T > 0, the resource constraint
is relaxed, and V̂n(ĉ, T) can be interpreted as the maximum utility of type ĉ in
a MWS-like sub-problem involving a subsidy of size T > 0 to the set of types
c ∈ [ĉ, c̄] ∩ Cn. We make one high-level technical assumption about V̂n(ĉ, T):

Assumption 1. For any c∗ < c̄, there exists an N′ > 0 such that the family of functions
{V̂n(ĉ, T)}ĉ∈[c,c∗],n≥N′ is equicontinuous in T at T = 0.

With Assumption 1, we assume that, across all sub-problems and discretiza-
tions, the value of the MWS sub-program has uniformly bounded sensitivity to
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small subsidies. It is straightforward to show that this assumption holds in stan-
dard models.10

3.2 Convergence of discretized allocations

We now adapt an argument used by Hellwig (2007)11 to show that there is a subse-
quence of these well-defined MWS equilibrium set of allocations which converges
on a dense set of types c. We use the completion of this convergent subsequence to
define a candidate MWS function V̄(c), which we show is continuous in c.

The following lemma shows that there exists a subsequence of discretizations
that converges for all c ∈ C.

Lemma 1. There exists a subsequence {nm}m∈N of N such that limm→∞ ~Anm(c; ĉ) ≡
~A∞(c; ĉ) exists for all c, ĉ ∈ C.

Define:

V̄∗(c) ≡ V(~A∞(c; c); c) = lim
m→∞

V̄nm(c) ∀c ∈ C, (21)

where ~A∞ is defined in Lemma 1. The following lemma shows that V̄∗(c) is readily
extended to c ∈ [c, c̄] and is continuous.

Lemma 2. If Assumption 1 holds, then the limit limc′↗c,c′∈C V̄∗(c′) ≡ V̄∗(c) exists, and
V̄∗(c) is continuous in c.

Proof. See Appendix A.

3.3 Statement and proof of main theorem

We verify, in two steps, that this candidate MWS function V̄(c) is indeed an MWS
equilibrium in the sense of Definition 1. The first step involves a simple continu-
ity argument which establishes that the appropriately-taken limits of allocations
in the discrete MWS problems are feasible in the continuous problem (i.e., satisfy

10Details for the many-type version of Rothschild and Stiglitz (1976)’s model are available in
Online Appendix B.

11The proof, which we omit here, follows the same argument as for Helly (1921)’s Selection The-
orem and as in Hellwig (2007)’s proof of Lemma B.3 (viz p. 812, where Hellwig cites Billingsley
(1968)).
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constraints (12) and (13)) and, moreover, yield zero profits at the limit. In the sec-
ond step, we show that no other feasible allocation can yield positive profits in the
limit problems. This second step is done by contradiction: if a feasible allocation
did yield positive profits, then the continuity of V̄(c) could be used to construct a
feasible allocation that would yield positive profits in some (sufficiently fine) dis-
cretization.

Theorem 1. There exists a MWS equilibrium ~A∗ corresponding to the reservation utility
function V̄∗(c) defined in (21).

Proof. Establishing the theorem requires showing that the function V̄(c) = V̄∗(c),
verifies the condition described in (11)-(13) in Definition 1. We do this in two
steps. In Step 1, we use a limiting argument to construct, for each ĉ, an allocation
{~A∗(c; ĉ)}c∈[ĉ,c̄] that satisfies (12) and (13) for which the value of (11) is 0. In Step 2,
we show that there cannot exist any ĉ and any associated allocation {~A†(c; ĉ)}c∈[ĉ,c̄]

that satisfies (12) and (13) for which the value of (11) is strictly positive.
Step 1: Constructing {~A∗(c; ĉ)}c∈[ĉ,c̄].

We make extensive use of Lemma 1, which defines ~A∞(c; ĉ) as a limit of a se-
quence {nm}m∈N of allocations ~Anm(c; ĉ) for each c, ĉ ∈ C, c ≥ ĉ.

First, consider ĉ ∈ C, and define ~A∗(c; ĉ) = ~A∞(c; ĉ) for all c ∈ C ∩ [ĉ, c̄]. Each
component of ~A∞(c; ĉ) is monotonic in c (which follows from single crossing and
incentive compatibility). So limc̃↗c,c̃∈C ~A∞(c̃; ĉ) and limc̃↘c,c̃∈C ~A∞(c̃; ĉ) are both
well-defined and coincide except possibly at a countable number of points, which
have measure 0 under the continuous distribution F. Extend ~A∗ to c /∈ C via

~A∗(c; ĉ) ≡ lim
c′↗c,c′∈C

~A∞(c′; ĉ).

Then, {~A∞(c; ĉ)}c∈C∩[ĉ,c̄] is incentive compatible for types c ∈ C ∩ [ĉ, c̄], so {~A∗(c; ĉ)}c∈[ĉ,c̄]

defined in this way is incentive compatible for all types c ∈ [ĉ, c̄]. Similarly,
V(~A∞(c; ĉ); c) ≥ V̄∗(c) for all c ∈ C ∩ [ĉ, c̄], so V(~A∗(c; ĉ); c) ≥ V̄∗(c) for all types
c ∈ [ĉ, c̄].

We will now show that
∫ c̄

c=ĉ Π(~A∗(c; ĉ); c)dF(c) = 0 whenever ĉ ∈ C. To that
end, for each m, extend ~Anm(c; ĉ) to all c ∈ [ĉ, c̄] via

~Am∗(c; ĉ) = ~Anm (max{c̃ ∈ Cnm ∩ [ĉ, c]}; ĉ) . (22)
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That is, “assign” types c outside of Cnm to the allocation of the closest lower-cost
type in Cnm . Exactly as in Hellwig (2007)’s Lemma B.1, the (almost everywhere)
pointwise convergence of ~Am∗(·; ĉ) to ~A∗(·; ĉ) and the setwise convergence (here,
weak convergence) of Fnm to F implies

∫ c̄

c=ĉ
Π(~A∗(c; ĉ); c)dF(c) = lim

m→∞

∫ c̄

c=ĉ
Π(~Am∗(c; ĉ); c)dFnm(c) = lim

m→∞
0 = 0. (23)

Second, consider ĉ /∈ C, and take any sequence k = 1, · · · , ∞ of ck ∈ C with ck ↗
ĉ. Use the associated sequence of (sub) allocations {~A∗(c; ck)}c∈[ck,c̄] to construct
(via a diagonalization argument as alluded to in footnote 11) a subsequence {km}
that converges for each c ∈ C ∩ [ĉ, c̄], and define ~A∗(c; ĉ) as the limit for each such c.
Complete the allocation by defining ~A∗(c; ĉ) for c /∈ C in terms of left-hand limits
of ~A∗(c′; ĉ) for c′ ∈ C. The resulting allocation is incentive compatible and has
V(~A∗(c; ĉ); c) ≥ V̄∗(c) for all c ∈ [ĉ, c̄]. Moreover, since

lim
m→∞

∫ ĉ

c=ckm

Π(~A∗(c; ckm); c)dF(c) = 0,

we have∫ c̄

c=ĉ
Π(~A∗(c; ĉ); c)dF(c)

=
∫ c̄

c=ĉ
Π(~A∗(c; ĉ); c)dF(c) + lim

m→∞

∫ ĉ

c=ckm

Π(~A∗(c; ckm); c)dF(c)

= lim
m→∞

∫ c̄

c=ĉ
Π(~A∗(c; ckm); c)dF(c) + lim

m→∞

∫ ĉ

c=ckm

Π(~A∗(c; ckm); c)dF(c)

= lim
m→∞

∫ c̄

c=ckm

Π(~A∗(c; ckm); c)dF(c) = lim
m→∞

0 = 0, (24)

where the last line follows from Equation (23). For each c ∈ [c, c̄], then, we have
identified a feasible allocation {~A∗(c; ĉ)}c∈[ĉ,c̄] which satisfies (12) and (13) and
yields zero profits.
Step 2: Showing that {~A∗(c; ĉ)}c∈[ĉ,c̄] is optimal.

Suppose, by way of contradiction, that there was some ĉ and some other allo-
cation {~A†(c)}c∈[ĉ,c̄] satisfying (12) and (13) with

∫ c̄
c=ĉ Π(~A†(c); ĉ)dF(c) = δ > 0. It

is straightforward to show that if there were such an allocation, there would be an-
other incentive compatible allocation {~A◦(c)}c∈[ĉ,c̄] with

∫ c̄
c=ĉ Π(~A◦(c); ĉ)dF(c) ≥
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δ/2 and
V(~A◦(c); c) ≥ V(~A†(c); c) + ε (25)

for some ε > 0.12 But, as we will now show, no such allocation can exist.
If it did, then {~A◦(c)}c∈Cn∩[c̃,c̄] would be obviously incentive compatible in the

nth discretization. For sufficiently high N, it would also satisfy V(~A◦(c); c) >

V̄N(c). To see this, recall that V̄n(c) converges pointwise to V̄∗(c). V̄∗(c) is mono-
tonic and, by Lemma 2, continuous in c, so V̄n(c) in fact converges to V̄∗(c) uni-
formly in n. Hence we could find N large enough so that V̄n(c) < V̄∗(c) + ε for all
c ∈ Cn ∩ [c̃, c̄] and n > N. Per equation (25), then, we would have V(~A◦(c); c) >

V̄n(c) for all n > N. But

lim
n→∞

∫ c̄

c=ĉ
Π(~A◦(c); c)dFn(c) =

∫ c̄

c=ĉ
Π(~A◦(c); c)dF(c) > δ/2 > 0,

so, for sufficiently high N′ > N, the allocation {~A◦(c)}c∈CN∩[ĉ,c̄] would be strictly
profitable, incentive compatible, and it would satisfy the minimum utility con-
straints V(~A◦(c); c) > V̄N′(c) ∀c ∈ CN′ ∩ [c̃, c̄], contradicting the fact that V̄N′(·)
are the reservation utilities associated with an MWS equilibrium in the N′th dis-
cretization.

4 Equilibrium construction

Having established existence of the MWS equilibrium for a continuous type space,
we now show how to construct it. A major advantage of working in continu-
ous type space in general is that it eases computation time. For example, as-
sume that types are uniformly distributed and have the same optimal contract
q∗ ≡ arg maxq[V(q, qc; c)]. For a discretized type space with only 25 types, there
are 624 constraints in the “Spence” program for the lowest cost type alone (24 min-
imum utility and 25 · 24 incentive compatibility constraints). It takes our computer
roughly 2.2 minutes to solve for the equilibrium allocation recursively (starting

12One can construct such an allocation by letting q◦(c) = q†(c), p◦(c̄) = p†(c̄)− ε̃, by integrating
the incentive compatibility constraint down to find p◦(c) for c ∈ [ĉ, c̄), and taking a sufficiently
small ε̃.

13



with the highest cost type).13 Solving only the final program (given reservation
utilities V̄ for higher cost types) takes roughly 40 seconds on its own. Below, we
will derive a method that leverages the properties of the continuous type equilib-
rium and computes the equilibrium in this example roughly 100 times faster (in
0.35 seconds).

4.1 Assumptions

We only add one additional assumption to those in Section 3: we assume that
preferences are linear in price, i.e., that utility is V(q, p; c) = ν(q; c) − p where
ν(q; c) is continuous, increasing, and concave in q. This quasilinearity assumption
is common in theoretical models for selection markets (e.g., Weyl and Veiga (2017),
Levy and Veiga (2019)) and empirical applications (e.g., Einav et al. (2010a, 2013),
Handel (2013), Hackmann et al. (2015), Handel et al. (2015, 2019)).

4.2 Construction

The main idea of the construction is to dissect the type space into intervals of types
for which minimum utility constraints do not bind (i.e., are slack) and those for
which they do bind, and to do this for a sequence of sub-problems of the form
[ĉ, c̄] with successively lower values of ĉ. Figure 2 illustrates this idea. It plots,
for several different ĉ’s, the difference ∆V(c; ĉ) ≡ V(~A(c; ĉ); c)− V̄(c) between the
realized utility of each type c in the [ĉ, c̄] interval and the reservation utility levels
V̄(c) which, as in Definition 1, play the key role in the MWS construction.

The points labeled c1 and c2 separate values of ĉ in conceptually distinct “steps”
in our construction. Values of ĉ in the interval [c1, c̄]—such as cA in the diagram—
correspond to what we call “step 1”. Values of ĉ in the interval [c2, c1)—such as cB

in the diagram—correspond to what we call “step 2”. Values of ĉ < c2, such as cC

in the diagram—correspond to what we call “step 3”.
For ĉ in step 1 (such as cA), Figure 2 shows ∆V(c; cA) > 0 on (cA, c̄]: in this step

(which may be empty), the entire interval of types [ĉ, c̄] have non-binding mini-
mum utility constraints (13). Interior types in this interval are cross-subsidized by

13The code is implemented in MATLAB R2018b and uses MATLAB’s optimization function fmin-
con.
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types below them. As ĉ is lowered within this step, the cross-subsidies grow, until
c1 is reached and we enter step 2.

For ĉ in step 2 (such as cB), Figure 2 shows ∆V(c; cB) = 0 on [cB, c1] and
∆V(c; cB) > 0 on (c1, c̄]. Types in [cB, c1] are “break-even” types for these sub-
problems, while groups [c, c̄] with c > c1 are cross-subsidized. In other words,
step 2 is characterized by an interval of break-even types at the bottom. As ĉ is
lowered within this step, the interval of break-even types expands without any
effects on higher types.

For ĉ in step 3 (such as cC), there are two intervals of cross-subsidized types
(with ∆V(c; cC) > 0), one at the top and one at the bottom, and an interval in
the middle of break-even types with ∆V(c; cC) = 0. As ĉ is lowered within this
interval, the break-even interval at the bottom expands, “eating” away at the inter-
mediate break-even interval. At some point, however, a new break-even interval
at the bottom (a la step 2) may appear, and steps 2 (and then 3) can be iterated.
Alternatively, as ĉ is lowered, the whole break-even interval may be “eaten” and,
as in step 1, no minimum utility constraints will bind.

Two key things will be critical as we build this sequence of steps. First, we need
a way to compute the allocation of types within a step (which implicitly determines
the reservation utilities V̄), and a criterion for determining when a step “ends”–
e.g., for finding c1 and c2 in the figure. In the subsections that follow, we show,
intuitively, how to do both of these things in each step and explain the underlying
logic. Formalizing this intuition is straightforward but tedious.14

We identify allocations via the coverage-utility pair (q, u), where u ≡ ν(q; c)− p
is type c’s utility from buying coverage q at price p. Then (because of single cross-
ing and as in Mirrlees (1971)) we can replace the global incentive compatibility
constraints (12) with local incentive constraints

u′(c) = νc(q(c); c) (26)

and monotonicity constraints

q′(c) ≥ 0 ∀c ∈ [ĉ, c̄]. (27)

14Details and pseudo-code for numerical implementation are available in Online Appendix C.
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Figure 2: Qualitative illustration of equilibrium construction.
The construction illustrates the dissection of the type space into intervals of types for which min-
imum utility constraints do not bind (i.e., are slack) and those for which they do bind. It does this
for a sequence of sub-problems for sub-economies consisting of an interval of types of [ĉ, c̄] with
successively lower values of ĉ. For each ĉ, it plots the difference ∆V(c; ĉ) ≡ V(~A(c; ĉ); c) − V̄(c)
between the realized utility of each type c in the [ĉ, c̄] interval and the reservation utility levels V̄(c).
In sub-problem [cA, c̄] (solid dark line), minimum utility constraints do not bind for any type; in
sub-problem [cB, c̄] (solid light line), minimum utility constraints do not bind for types c ∈ [c1, c]
but bind for types c ∈ [cB, c1); and in sub-problem [cC, c̄] (dashed line), minimum utility constraints
do not bind for types c ∈ [cC, c∗] and types c ∈ [c1, c̄] but do bind for types c ∈ (c∗, c1). See text for
more details.
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In this section, we follow the common-in-the-optimal-tax-literature (viz Rothschild
and Scheuer (2013)) approach of dropping the monotonicity constraint. This ap-
proach is valid insofar as the resulting allocations are indeed monotonic. Oth-
erwise, optimal bunching, wherein a range of types receive the same allocation,
needs to be considered. Incorporating bunching is conceptually straightforward,
but rotationally cumbersome. In the interest of expositional clarity, we relegate
bunching considerations to Online Appendix C.3.

4.2.1 Step 1: Non-binding minimum utility constraints

As a first step, we solve, for each ĉ ∈ [c, c̄), the problem:

max
{(q(c),u(c))}c∈[ĉ,c̄]

u(ĉ) (28)
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subject to the local incentive constraints (26) for all c ∈ [ĉ, c̄] and the resource con-
straint ∫ c̄

ĉ
(ν(q(c); c)− u(c)− q(c)c) f (c)dc ≥ 0. (29)

This is the primal form of the ĉ-type MWS sub-program, relaxed by dropping the
minimum utility constraints (13). The first order conditions for this family of prob-
lems imply that solutions q0(c) satisfy

νq(q0(c); c)− c
vqc(q0(c); c)

=
1− F(c)

f (c)
, (30)

and hence are independent of ĉ. Given q(c) = q0(c), the local incentive constraint
(26) defines a differential equation that determines the utility allocation

u0(c; ĉ) = −
∫ c̄

c
vc(q0(c′); c′)dc′ + u0(c̄; ĉ)

up to the constant u0(c̄; ĉ), which is in turn pinned down by the resource constraint
(29).

Let c1 be the smallest type for which u0(c̄; ĉ) is non-increasing on the inter-
val ĉ on [c1, c̄]. For ĉ in this interval, u0(c; ĉ) ≥ u0(c; c) for all c ≥ ĉ. As such,
{(q0(c), u0(c; c))}c∈[ĉ,c̄] solves (28) subject to (26), (29), and the minimum utility con-
straints u(c) ≥ u0(c; c) for all c ≥ ĉ. In other words, the utilities V̄(c) ≡ u0(c; c) are
the MWS reservation utilities (in the sense of Definition 1) for c ∈ [c1, c̄].

4.2.2 Step 2: Binding minimum utility constraints

For ĉ slightly below c1, u0(c1; ĉ) < u0(c1; c1) ≡ V̄(c1). Consequently, minimum
utility constraints are violated in the relaxed sub-problem for ĉ. Intuitively, this is
because the ĉ type does not want to cross-subsidize higher types. Indeed, it wants
cross-subsidies from them. The minimum utility constraints prevent such “down-
ward” cross-subsidies from taking place. In other words, there will be an interval
below c1 for which types break even (i.e., receive actuarially fair allocations); their
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allocation will satisfy:

u(c) = ν(q(c); c)− cq(c). (31)

This individual break-even condition (together with incentive compatibility) im-
plies that

q′(c) =
q

νq(q(c); c)− c
. (32)

Using initial conditions from the allocation for type c1, we solve (32) to determine
the insurance coverage for break-even types, q1(c), and then use the local incentive
compatibility constraints (26) to determine utility, u1(c).

We can construct (q1(c), u1(c)) in this way for all c < c1. For any ĉ < c1, we
can consider the allocation which assigns (q1(c), u1(c)) to all types c ∈ [ĉ, c1) and
(q0(c), u0(c; c1)) to all types c ∈ [c1, c̄]. Such allocations may or may not be con-
strained efficient—i.e., they may or may not maximize profits subject to incentive
compatibility and to the constraints u(c) ≥ u1(c) ∀c ∈ [ĉ, c1) and u(c) ≥ u0(c; c1)

∀c ∈ [c1, c̄]. If they are constrained efficient for all ĉ in an interval below c1, then
we can readily verify that the MWS reservation utilities are V̄(c) = u1(c) in that
interval.15

Finding the maximal interval of break-even types thus boils down to decreasing
ĉ until the resulting allocation ceases to be constrained efficient. Werning (2007)
derives a simple test for the constrained efficiency of income tax systems. The
following lemma adapts this test to the insurance context of our model.16

Lemma 3. Let

g(c) ≡ d
dc

[
(νq(q1(c), c)− c) f (c)

vcq(q1(c), c)

]
+ f (c), (33)

15The argument is: if we “guess” that V̄(c) = u1(c), then the fact that the allocations are con-
strained efficient and yield zero profits together imply that they meet the criteria of Definition 1.

16Under some additional assumptions, Werning (2007) also derives a (weaker) test based on local
“Laffer” effects: does a local reduction in marginal tax rate at one point in the type distribution
increase revenue? If so, the extra revenue can be used to make other types better off and the tax
schedule is constrained inefficient. The test we develop here is a qualitative obverse. It amounts to
testing whether raising the tax on the lowest cost type and using the extra revenue to make all of
the other types better off relaxes the incentive constraints by enough to make that lowest cost type
better off in spite of the higher tax.
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and c2 ≡ sup
{

c ∈ [c, c1)|g(c) < 0
}

(and c2 = c if g(c) ≥ 0 for all c ∈ [c, c1)). Then,

V̄(ĉ) = u1(ĉ)

is the MWS-reservation utility associated with the interval of types ĉ ∈ [c2, c1].

Proof. See Appendix A.

4.2.3 Step 3: Pareto-improving transfers

As we lower ĉ to c2− ε, we (by construction) fail the constrained Pareto optimality
test if we assign the break-even allocation from Step 2 to types [c2 − ε, c2). Since
the allocation for types c ∈ [c2, c̄] is constrained Pareto efficient, this failure can
only happen insofar as there is scope for Pareto-improving transfers from types
c ∈ [c2 − ε, c2) to the types above. As these Pareto-improving transfers are imple-
mented, minimum utility constraints become slack for some interval containing c2.
Interval (cC, c∗) in Figure 2 illustrates such an interval. Computing this interval is
reasonably straightforward, since, as in step 1, slack minimum utility constraints
(together with the fact that the interval must break even) allow one to use the first
order conditions to characterize the allocation.

As we further lower ĉ in step 3, three things can happen. First, the upper bound
of the interval of slack minimum utility constraints (c∗ in Figure 2) can continue to
increase until it hits c1. Second, the upper bound of the interval of slack minimum
utility constraints could continue to increase, without reaching c1, until the lower
bound hits c. Third, the upper bound of the interval of slack minimum utility
constraints could start to decrease.

Let c3 be the critical ĉ at which one of these three things occurs. Then, for
each ĉ ∈ [c3, c2], V̄(ĉ) will be the utility of the ĉ type’s allocation in the allocation
computed for the interval associated with the ĉ type. In the first case, the break-
even interval disappears, and all types become cross-subsidized, and we can revert
to a (slightly modified) version of step 1 to proceed to lower ĉ’s. In the second
case, we are done. The third case is analogous to the end of step 1: cross-subsidies
would start to shrink, indicating that at c3 we should return to step 2 and begin to
construct a new break-even interval.
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4.3 Equilibrium allocation

The above procedure iterates over groups of types with binding and non-binding
minimum utility constraints until it hits the lowest cost type c. It does not only
determine reservation utilities V̄(c). It also determines the equilibrium allocation,
which is the solution to the lowest cost type’s program. This solution features ex-
actly the different sub-groups of types we have identified before, namely intervals
with and without binding minimum utility constraints. As the construction above
determines the allocation for each type in these intervals, it also determines the
final equilibrium allocation. The next section provides an illustration.

Remark 1 (Cross-subsidization.). Note that the preceding construction also provides a
criterion for the existence of cross-subsidies in the MWS equilibrium. Subsidies from low
cost to high cost types are reflected by positive transfers T0. If c1 ≡ c̄, and g(c) ≥ 0 for all
types c ∈ (c, c̄) (so that T0 is locally non-increasing at c̄ and the separating and individ-
ually break-even allocations are all constrained efficient), then there are no cross-subsidies
in the MWS equilibrium. In this case, it coincides with Riley (1979)’s and Azevedo and
Gottlieb (2017)’s equilibrium.

Remark 2 (Numerical stability). The continuous construction described in the algo-
rithm above is significantly faster than numerically recursively solving Spence’s discrete
problems. For example, with uniformly distributed types we find that the continuous con-
struction finishes within less than a second while the time to solve Spence’s discrete prob-
lems can easily take an hour or more.

We have also found the continuous construction to be significantly more stable, nu-
merically. This is intuitive: each type’s (sub-problem) program recursively depends on the
solution of the previous program. Thus, numerical errors from one recursion step propa-
gate and multiply through to the final allocation. For example, with uniformly distributed
types we find that the continuous construction quickly converges. E.g., a discretized type
space with only 40 types is sufficient such that allocations do not change by more than
0.25% when refining the discretization. Instead, refining the type space beyond 40 types
increases the change in allocations when using Spence’s discrete problems: it does not
converge. In this case, an increase in numerical errors due to additional sub-problems and
constraints to be numerically solved dominates the benefit of a more precise type space.

Our results suggest that a numerical implementation of Spence’s discrete problems is
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neither sufficiently fast nor numerically stable to be used in (empirical) applications.17 As
we show in the following application, our continuous construction can be readily employed
in applied contexts.

5 Application

We illustrate our approach by considering a particularly salient question in the
context of insurance and selection markets, namely: how effective are policy in-
terventions? The quantitative welfare effects of policy interventions in markets
with asymmetric information have received much attention in recent years (e.g.,
Finkelstein et al. (2009), Einav et al. (2010b), Hackmann et al. (2015), Azevedo and
Gottlieb (2017)).

Below, we study the effect of a minimum coverage mandate, which is the canon-
ical solution to adverse selection in insurance markets (Akerlof (1970)).18 Our anal-
ysis closely follows Azevedo and Gottlieb (2017)’s approach in that we compute
the effect of a marginal increase in the mandate. We contrast the effect of man-
dates in MWS equilibrium to that in Azevedo and Gottlieb (2017)/Riley (1979)
(AG) equilibrium. Our results uncover substantial differences in the welfare ef-
fects of mandates—in particular much larger welfare effects in the AG framework,
as measured by consumer surplus. Intuitively, the larger effects in the AG frame-
work stem from the fact that the AG equilibrium is not constrained efficient, and
the mandate moves the equilibrium “closer” to the constrained efficiency fron-
tier.19

17We provide more detailed results on numerical stability and efficiency in Online Appendix C.5.
18Other possible policy interventions that address adverse selection frictions include employer-

provided pooled insurance (e.g., Finkelstein (2002)), risk adjustment (e.g., Handel et al. (2015)), and
government-provided basic insurance (e.g., Boone (2015)). For an overview, we refer to Geruso and
Layton (2017).

19This result is similar to Dahlby (1981), who shows that mandating partial pooled-price
insurance coverage—and allowing for optional supplemental insurance—can lead to Pareto-
improvements in the Rothschild and Stiglitz (1976) model. The reason is that compulsory pooled-
price insurance implements the informationally feasible Pareto-improving cross-subsidies that are
ruled out in Rothschild and Stiglitz (1976). In contrast, mandates in an MWS world cannot yield
Pareto improvements.

21



5.1 Comparative equilibrium effects of mandates

We consider a minimum-coverage mandate M > 0 which requires that all con-
sumers purchase a contract with q ≥ M. We compute the effects of this mandate by
comparing the equilibria with it and without it; we do so using both the MWS equi-
librium concept and the AG equilibrium concept. Computing the AG equilibrium
(with or without a mandate) is straightforward.20 So is adapting the construction
of the MWS equilibrium from the preceding section to allow for a mandate.21

We use a calibration inspired by Azevedo and Gottlieb (2017, Section 5) and
Einav et al. (2013). Consumers have utility V(q, p; c) = (qc − γ

2 q(q − 2)σ2) − p,
with γ = 10−5 and σ = 25, 000. Types’ cost c is normally distributed with mean
4, 340 and standard deviation 300, truncated to c ∈ [3340, 5340]. Notice that in our
calibrations each type’s individually optimal (first-best) insurance coverage is q =

1. Figure 3 (a) contrasts expected utility in MWS and AG equilibrium allocations.
The MWS equilibrium yields significantly higher welfare than the AG equilibrium:
it Pareto dominates the AG equilibrium, and the MWS equilibrium yields roughly
20% higher (sum across types) consumer surplus.

One can “see” the steps of the MWS equilibrium construction in Figure 3 (a).
For the costliest type, equilibrium utility exceeds her reservation utility V̄(c̄) (which
coincides with the AG equilibrium utility, i.e., her utility with her first-best break-
even contract). Thus, she is cross-subsidized by lower cost types. Moving down
cost types, MWS equilibrium and reservation utility converge, indicating that cross-
subsidies become smaller. Roughly at cost type c = 4, 000, V̄ coincides with the
MWS equilibrium utility, which signals the end of cross-subsidies and the begin-
ning of a break-even interval; this is where the algorithm in Section 4 transitions
from step 1 to step 2. The lower cost types’ equilibrium utility and reservation
utility coincide, implying that their contracts individually break even. So, in this
example, step 3 is never needed.

20In AG equilibrium, each contract breaks even. It is computed analogously to a break-even
interval in step 2 of the MWS equilibrium construction. Details are available on request.

21If M ≥ q0(c1), M is reached in step 1 of the equilibrium construction (with the notation from
Section 4). In this case, there exists a type c′ such that all types c ∈ [c, c′] receive coverage M,
q0(c) = M. For these types, transfers T0 increase when adding lower cost types in step 1. Thus,
the construction will finish in step 1. If M is reached in step 2 instead, step 2 immediately reverts
to step 3, since there is necessarily cross-subsidization among the types that buy M. Then, step 3
implements cross-subsidies from low cost types buying M to higher cost types. Details are available
on request.
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Figure 3 (b) depicts, for a given coverage level, the unit price and the average
cost of types that buy the contract in equilibrium. The illustration mirrors the
insights from Figure 3 (a). Unit prices and costs coincide for the AG equilibrium
since each contract individually breaks even. This is similar for the break-even
interval q ≤ 0.61 in MWS equilibrium. In contrast, the unit prices for mid-sized
coverage q ∈ (0.61, 0.95) exceed the cost of supplying them. Firms make profit on
these contracts, which enables them to cross-subsidize higher cost types, resulting
in lower unit prices for q ∈ (0.95, 1] than their costs.

Figure 3: Equilibrium allocations without a mandate.
Figure (a) illustrates equilibrium utility, reservation utility V̄, and distribution of consumer types.
Figure (b) depicts the equilibrium unit price (p∗/q∗; solid lines) and average cost of consumers that
buy a contract with given coverage level in equilibrium (E[c | q∗(c) = q]; circles). The size of the
circles represents the mass of consumers buying a contract. The MWS equilibrium involves net
cross subsidies from intermediate cost types to the highest cost types (black circles in Figure (b) lie
below the cost curve for intermediate coverage levels and above for high coverage levels) but no
cross subsidies from the lowest cost types (black circles lie on the cost line in Figure (b) and MWS
equilibrium utilities coincide with reservation utilities in Figure (a)). Cross subsidies are Pareto-
improving (the MWS equilibrium utilities rightmost circles lie everywhere above the AG utilities
in Figure (a)). Prices and average costs (definitionally) coincide in the AG equilibrium.
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(a) Equilibrium utility.
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(b) Unit prices and costs.

Figure 4 illustrates the effects of imposing a mandate q ≥ M ≡ 0.54 in the
AG and MWS equilibrium. In AG equilibrium, the mandate forces many low-cost
types to pool at coverage M. This causes M to be cheap, inducing many (indeed,
most) of the high-cost types to switch from their original AG contract to the min-
imum contract M. (In the language of Azevedo and Gottlieb (2017, p. 89), the
“knock-on” effects are very strong.)

In contrast, the effect of a mandate is almost negligible in MWS equilibrium.
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Figure 4: Equilibrium allocations and costs with an M = 54% coverage mandate.
The figure depicts the equilibrium per-unit price (p∗/q∗; solid lines) and average costs of consumers
purchasing each coverage level in equilibrium (circles, the sizes of which reflect the mass of buyers).
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Since, in the absence of a mandate, consumers receive more coverage in MWS than
in AG equilibrium due to cross-subsidies, there are less incentives for consumers
to change their choices upon the implementation of a mandate in MWS compared
to AG equilibrium. Moreover, MWS equilibrium “smooths” a mandate’s distor-
tionary effect on higher cost types by implementing cross-subsidies. As a result,
the mandate in Figure 4 has a negligible effect in MWS equilibrium, while it has
a strictly positive effect on AG equilibrium, increasing (total) consumer surplus
by 0.75%. The effect differential stems from the inability of the AG equilibrium to
implement Pareto-improving cross-subsidies. The mandate then partially imple-
ments such subsidies, reducing the deviation of the AG allocation from the (con-
strained) efficiency frontier.

Figure 5 illustrates the effect on total consumer surpluses of different mandate
levels. In line with the previously developed intuition, we find that a mandate
leads to a larger increase in total consumer surplus in AG than in MWS equilib-
rium across all mandates. The difference between the mandate’s effects is large: a
mandate increases consumer surplus by over ten times more in the AG equilibrium
than in the MWS equilibrium.22

22In results not reported here, we also computed that the difference in a mandate’s welfare effect
(between AG and MWS equilibrium) is increasing with the ratio of the mass of low-cost to high-cost
types. The intuition is that there are more cross-subsidies in MWS equilibrium the less expensive
it is to implement them, i.e., the larger the ratio of low-cost to high-cost types. Then, the MWS
equilibrium allocation “differs more” from the AG allocation in the absence of mandate—which
boosts the difference in the effect of mandates.
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Figure 5: Welfare effects of mandates.
The figure plots the change in consumer surplus as a function of the minimum coverage mandate,
relative to the consumer surplus with unrestricted insurance coverage for the AG and MWS equi-
libria.
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In our example, a mandate of 100% coverage maximizes consumer surplus,
since it achieves a first-best allocation. Thus, the effect of a 100% mandate re-
flects the distance between an original (no-mandate) equilibrium allocation and
the first-best equilibrium. In MWS equilibrium, a 100% mandate increases con-
sumer surplus by 2.1% relative to the original MWS allocation. The MWS equi-
librium is thus very close to the “first-best” informationally unconstrained fron-
tier. Since the MWS allocation is second-best efficient, this result suggests that the
cross-subsidies implemented in the MWS equilibrium resolve “most” of the ad-
verse selection-driven pathologies in the market.

In AG equilibrium, a 100% mandate increases consumer surplus by 27% rela-
tive to the original AG allocation. Thus, the original AG equilibrium is far from
being first-best. Intuitively, this welfare loss can be decomposed into two sources:
information frictions arising from private information; and a failure of the equilib-
rium to achieve a constrained efficient outcome. Combining this result with the
MWS result suggests (intuitively rather than formally) that only 2.1 percentage
points of this distance is due to inherent information frictions. The rest arises be-
cause of the failure of the AG market dynamics to reach the constrained efficiency
frontier.

25



5.2 Discussion of the AG and MWS equilibrium concepts

As discussed in Hendren (2014), Rothschild and Stiglitz (1976)’s equilibrium-non-
existence result stems from a tension between two conceptually distinct competi-
tive forces. On the one hand, competition should drive profits of individual con-
tracts to zero (otherwise there is scope for cream-skimming). On the other hand,
constrained inefficient outcomes can be exploited by the free entry of new firms
offering an array of products that simultaneously and profitably attract the entire
market. Insofar as constrained efficiency requires cross-subsidization across con-
tracts sold to different types of buyers, these two distinct competitive forces are
fundamentally unreconcilable.

The equilibrium concepts of Azevedo and Gottlieb (2017) and Riley (1979) de-
scribe market dynamics which resolve this tension in favor of the first compet-
itive force, yielding market equilibria which have individually break-even con-
tracts but are often constrained inefficient. Instead, the MWS equilibrium concept
resolves the tension in favor of the second competitive force, yielding market equi-
libria which are constrained efficient but (may) involve cross subsidies across con-
tracts.23

Concepts in both veins have been widely employed for studying competitive
markets with adverse selection in markets with small, finite type spaces (includ-
ing Hoy (1982), Crocker and Snow (1985), Puelz and Snow (1994), Crocker and
Snow (2008), Finkelstein et al. (2009), and Mimra and Wambach (2019b) for the
MWS concept, and Besanko and Thakor (1987), Landers et al. (1996), Newhouse
(1996), Inderst (2005), Handel et al. (2015), Boyer and Peter (2018), and Mimra
and Wambach (2019b) for the AG/Riley concept). But adjudicating which con-
cept is appropriate for empirical applications, and in what circumstances, calls for
tractable models with richer type spaces. Our paper is the first to provide such a
model for the MWS concept.

The application in the preceding subsection shows that the MWS and AG con-

23As observed by Farinha Luz (2017), resolving the tension in favor of individually break-even
contracts means that equilibrium outcomes are locally insensitive to the distribution of types. Far-
inha Luz extends the two-type Rothschild and Stiglitz (1976) model to allow firms to make stochastic
contract offers, and shows that the resulting equilibrium exists, depends continuously on the un-
derlying type distribution, and involves cross-subsidies across types. MWS equilibria—including
our characterization of it with continuous types—do not involve stochastic offers, but, as in Far-
inha Luz (2017), yield equilibrium outcomes that are continuous in the type distribution and in-
volve cross-subsidies.
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cepts have radically different predictions about allocations. They are, therefore,
empirically distinguishable. These differences also have potential policy implica-
tions. For example, insofar as one finds real-world allocations are better described
by the AG equilibrium allocations in our application, then the resulting allocations
lie far below the constrained efficient frontier. In this case, there is, at least in prin-
ciple, scope for public policy interventions that are not just welfare improving in
aggregate (e.g., in certainty equivalent terms), but which are Pareto improving.

6 Conclusions

We show how to extend the MWS equilibrium concept to models with a one-
dimensional continuum of cost types, and we prove the existence of such an equi-
librium under weak conditions. The underlying argument and conclusions readily
extend to mixed-distribution models with a continuum of costs and a finite number
of mass points.

We also describe a quasi-recursive method for characterizing and computing
the MWS equilibrium with continuous types. This method relies on ordinary dif-
ferential equation techniques and a test for Pareto optimality drawn from the op-
timal tax literature, and it is efficient enough to be of potential use for in empir-
ical applications. Among these empirical applications is the ability to compare
the constrained efficient MWS equilibrium concept with the individual-contract-
break-even solution concept developed in Azevedo and Gottlieb (2017) in empiri-
cally realistic settings.

Even if the AG equilibrium concept turns out to be more empirically realistic
in a broad range of settings, our algorithm for computing the MWS equilibrium
is still valuable, because it provides a useful benchmark for analyzing the welfare
implications of market interventions. Specifically, because the MWS equilibrium is
constrained efficient, the welfare effects of a given policy intervention in an MWS
world are exclusively a result of movements along the second-best Pareto frontier
towards allocations which are closer to the first-best frontier. As such, comparing
a (notional) MWS world to an (actual) AG world provides a useful decomposition
of the welfare effects in the latter into the components due (1) to fundamentally
un-solvable asymmetric-information-driven market pathologies and (2) to failures
of the competitive equilibrium to address in-principle solvable problems.
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A Appendix

A.1 Proof of Lemma 2

Proof. By assumption, Vc < ξ < 0. Incentive compatibility therefore implies that
V̄∗(c) is decreasing in c and indeed, that V̄∗(c)− V̄∗(c′) > ξ(c′ − c) for all c′ > c.

Let p̄c = max{pc ≥ 0 : V(q∗c , pc; c) ≥ V(0, 0; c)} be type c’s maximum will-
ingness to pay for her optimal actuarially fair contract q∗c ≡ arg maxq[V(q, qc; c)].
Define π̄ = sup{ p̄c|c ∈ C} as the upper bound for maximum profits a firm can
make on any type. Fix any c∗ < c and any δ > 0. Use Assumption 1 to find an
ε > 0 such that

V̂n(c, f̄ 2επ̄)− V̂n(c, 0) < δ. (34)

Choose ε < δ.
Now fix any c ∈ (c, c∗), any c+ ∈ C ∩ (c, c + ε) and c− ∈ C ∩ (c− ε, c), and an

N such that c+, c− ∈ CN. We will show that

V̄n(c−)− V̄n(c+) < (2k + 1)δ ∀n ≥ N. (35)

The lemma will follow immediately.
Towards showing (35), first note that

V̄n(c−)− V̄n(c+) =
[
V̄n(c−)−V(~An(c+; c−); c+)

]
+
[
V(~An(c+; c−); c+)− V̄n(c+)

]
(36)

≤
[
V̄n(c−)−V(~An(c−; c−); c+)

]
+
[
V̂n(c+, f̄ 2επ̄)− V̄n(c+)

]
(37)

≤ 2εk + δ ≤ (2k + 1)δ. (38)

The third line follows from V̄n(c−) = Vn(~An(c−; c−); c−), the uniform bound k on
Vc, (34), V̂(c, 0) = V̄(c), and the choice of ε.

The second line follows from two observations. First: V(~An(c+; c−); c+) ≥
V(~An(c−; c−); c+) by incentive compatibility for the c+ types in the c− type’s MWS
problem. Second, in the solution to the c− type’s MWS problem, there will be some
negative profits −T ≤ 0 on types in the range [c+, c̄]. Given T and the allocation
for types in [c−, c+), the allocation of the types in [c+, c̄] must maximize the utility
of the c+ type subject to incentive compatibility for all types in [c−, c̄], the mini-
mum utility constraints for types [c+, c̄], and the resource constraint relaxed by T.
V(~An(c+; c−); c+) is the result of this maximization. Because of the (extra) incen-
tive constraints associated with the lower types [c−, c+), this maximization prob-
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lem is tighter than the problem defining V̂n(c+, T). Hence, V(~An(c+; c−); c+) ≤
V̂n(c+, T). T is equal to the total profits on types in [c−, c+), the mass of which is
less than f̄ 2ε and the maximum profits from each of which is bounded by π̄. Since
V̂n(c+, T) is weakly increasing in T, it follows that V̂n(c+, T) ≤ V̂n(c+, f̄ 2επ̄).

A.2 Proof of Lemma 3

Proof. We need only to show that constrained efficiency of the step-2-like alloca-
tions (i.e., those featuring an interval of break even types below c1) is equivalent
to g(c) ≥ 0. Following Werning (2007), take any incentive compatible, break-even
allocation (q∗(c), u∗(c)) (where u∗(c) ≡ ν(q∗(c); c)− p∗(c)). To test if this is con-
strained Pareto efficient, consider the problem of maximizing profits, subject to
incentive compatibility and the “utility constraints” 0 = u(c)− u∗(c):

max
{(q(c),u(c))}c∈[c,c̄]

∫ c̄

c
(ν(q(c); c)− u(c)− q(c)c) f (c)dc (39)

subject to 0 = νc(q(c); c)− u′(c) ∀c ∈ [c, c̄]; [multiplier η(c)] (40)
and 0 = u(c)− u∗(c) ∀c ∈ [c, c̄]; [multiplier ψ(c)]. (41)

The Lagrangian, after integrating the incentive constraint by parts, is:

L =
∫ c̄

c
(ν(q(c); c)− u(c)− cq(c)) f (c)dc +

∫ c̄

c
(u(c)− u∗(c))ψ(c)dc

−
∫ c̄

c

(
η′(c)u(c)− η(c)νc(q(c); c)

)
dc + [η(c)u(c̄)− η(c)u(ĉ)] . (42)

As in Werning (2007), the original allocation is constrained Pareto optimal pre-
cisely when the Lagrange multipliers ψ(c) on the utility constraints are all non-
negative. The first order conditions for this problem are, with respect to u(c),

η′(c) = ψ(c)− f (c) (43)

and, with respect to q(c),

(νq(q(c); c)− c) f (c)− η(c)vcq(q(c), c) = 0.

Solving the latter for η and differentiating yields

η′(c) =
d
dc

(νq(q∗(c), c)− c) f (c)
vcq(q∗(c), c)

= ψ(c)− f (c).

Comparing with (43) shows that g(c) = ψ(c). Hence, the constrained efficiency is
equivalent to g(c) ≥ 0.
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– ONLINE APPENDIX –

B Equicontinuity in the canonical setting

Rothschild and Stiglitz (1976)’s insurance market model is a special case of the
model considered in the main text. In this model, c ∈ (0, 1) is interpreted as the
probability of experiencing a loss of size L > 0 out of a fixed wealth W for a von
Neumann-Morgenstern expected utility maximizer with a strictly concave utility
function u(·). Without loss of generality, we normalize L to 1, so that the coverage
level q can be interpreted as the gross indemnity (conditional on a loss), and the
expected cost of selling such a contract to type c is qc. Upon buying a contract
(q, p), type c’s utility is uL = u(W − 1 + q − p) in the loss state, and it is uNL =

u(W − p) in the no-loss state.
In this section, we prove that Assumption 1 from the main text is satisfied in

this setting: the utility benefit of a small transfer in MWS equilibrium is uniformly
bounded across MWS sub-problems and sufficiently fine discretization of the type
space. The proof follows two steps. First, we prove an auxiliary lemma, stating
that in a c-type’s sub-problem either type c is bound away from full insurance24

uniformly across fine discretizations or there are cross-subsidies from low to high
risk types. Second, we leverage this result in computing the welfare effect of a
small transfer in MWS equilibrium: if type c is uniformly bound away from full
insurance, one can use this transfer to benefit only type c in an incentive compatible
way; otherwise, the transfer can be used to increase utility of each type. In both
cases, we can uniformly bound the transfer’s impact on the c type’s utility, which
by the envelope theorem and concavity of the MWS program (in this canonical
case) implies equicontinuity of the functions {V̂n(c, T)}c∈[c,c∗],n>N′ .

Theorem B.1. Assumption 1 is satisfied in the Rothschild and Stiglitz (1976) model.
24i.e., c faces a deductible.
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B.1 Auxiliary Lemma

Before proving the theorem, we set up some notation and establish an auxiliary
lemma. Recall (from the main text) that ~An(c; ĉ) = (qn(c; ĉ), pn(c; ĉ)) is the alloca-
tion that the c type receives in the MWS equilibrium sub-problem for the ĉ type
in the nth discretization. Define Dn(c; ĉ) = 1 − qn(c; ĉ), which is the insurance
contract’s deductible.

Lemma B.1. For any c∗ < c̄, there exists a D̄ > 0 and an N such that for all c < c∗ and
all n ≥ N either

1. Dn(c; c) > D̄ or

2. ∑c′∈[ĉ,c̄]∩Cn f n(c′) (pn(c′; c)− c′qn(c′; c)) < 0 ∀ĉ > c.

In other words, for large enough n, either the type c < c∗ faces a “large” de-
ductable in her own MWS sub-problem or the allocation for the c type’s MWS
sub-problem involves cross-subsidies for all subgroups [ĉ, c̄] for every ĉ > c.

For any particular n and c, the fact that either property 1 or 2 holds is straight-
forward: if Dn(c; c) = 0, then all types get the same pooled fair allocation and
property 2 clearly holds. The content of the proof is to construct a single D̄ for
which either 1 or 2 holds for all c and all sufficiently large n.

Proof. Fix any c∗ < c̄, c ≤ c∗, c ∈ C, and any n. Consider any allocation {(q(c′), p(c′))}c′∈[c,c̄]∩Cn

with q(c′) ≤ 1 for all c′ (as will be true in any MWS sub-allocation since q∗ = 1
is the individually optimal (first-best) insurance coverage in the RS model) and let
D = 1− q(c). By incentive compatibility (and single crossing), q(c′) ≥ q(c) for
all c′ ≥ c, and (q(c′), p(c′)) must lie below the c̄ type’s indifference curve through
(q(c), p(c)), labeled ICc̄ in Figure B.1.

Similarly, (q(c′), p(c′)) must lie above the c type’s indifference curve through
(q(c), p(c)) which, to the right of (q(c), p(c)) and for q(c′) < 1, lies above the iso-
profit line Π̄c(q′) = p(c) + c(q′ − q(c)).25 All types’ allocations must therefore

25The reason is that, in the RS model, a type c’s marginal willingness-to-pay (and thus her indif-
ference curve’s slope) is steeper than her marginal cost c if q(c) < 1:

dp
dq

= c
u′L

cu′L + (1− c)u′NL
> c ⇔ u′L > u′NL ⇔ q < 1.
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Figure B.1: Constructing D for Lemma B.1.

lie in the shaded area in Figure B.1. Denote by pA and pB the right-hand “corner
prices” of this area. Formally: pB is the price for full insurance that makes type c̄
indifferent to (q(c), p(c)), satisfying

u(W − pB) = (1− c̄)u(W − p(c)) + c̄u(W − p(c)− D),

and pA is the price for full insurance on the c-type iso-cost line through (q(c), p(c)),
i.e., pA = p(c) + cD.

Given any type c′ ∈ [c, c̄], the least profitable contract in the area is (1, pA) and
the most profitable is (1, pB). Since the MWS sub-problem has exactly zero profits
overall, this implies that pB is above and pA is below the joint pooling price

pB ≥ cn
M(c) ≥ pA

where
cn

M(c) ≡ EFn [c′|c′ ∈ [c, c̄] ∩ Cn]

is the expected cost in c type’s sub-problem. Thus, cn
M(c) is the cost of a pooling

36



contract for types [c, c̄] ∩ Cn. It follows directly from the definition of pA that

cD ≤ cn
M(c)− p(c). (B.1)

Similarly, from the definition of pB:

u(W − cn
M(c)) ≥ (1− c̄)u(W − p(c)) + c̄u(W − p(c)− D) ≥ u(W − p(c)− D)

and hence

cn
M(c) ≤ p(c) + D. (B.2)

The preceding formalizes the simple observation that if the deductible D is small
then p(c) must be close to the fair pooling price cn

M(c). At full insurance, it is
obvious that all subgroups [ĉ, c̄] receive cross-subsidies from the lower risk types
[c, ĉ), for any ĉ ∈ (c, c̄). We will now show that the same is true for sufficiently
large N and for sufficiently small D.

To that end, define:
cM(c) ≡ lim

n→∞
cn

M(c),

cn
H(c) ≡ E[c′|c′ ∈ [cM(c), c̄], Fn], and cH(c) ≡ lim

n→∞
cn

H(c)

cn
L(c) ≡ E[c′|c′ ∈ [c, cH(c)], Fn], and cL(c) ≡ lim

n→∞
cn

L(c),

and
Z ≡ min

{
min{cH(c′)− cM(c′), cM(c′)− cL(c′)}|c′ ∈ [c, c∗]

}
> 0,

where Z > 0 follows from c∗ < c̄.
The fact that the CDF Fn converges uniformly to the continuous distribution

F implies that cn
i (c) converges uniformly for each i ∈ {L, M, H}. Hence, one can

choose N such that, for all c, and i ∈ {L, M, H}, n > N implies |cn
i (c)− ci(c)| <

Z/3. For such n, then, cn
H(c)− cn

M(c) > Z/3 and cn
M(c)− cn

L(c) > Z/3.
For n > N and any c, the total profits accruing to the set of types below any
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given ĉ ∈ Cn in the MWS-sub-problem for type c are:

Π∗(ĉ; c) = ∑
c′∈[c,min{ĉ,cn

A})∩Cn

f n(c′)Π(~An(c′, c); c′)

+ ∑
c′∈[cn

A,min{ĉ,cn
B}]∩Cn

f n(c′)Π(~An(c′, c); c′)

+ ∑
c′∈(cn

B,ĉ]∩Cn

f n(c′)Π(~An(c′, c); c′) (B.3)

where cn
A ≡ pA and cn

B ≡ pB, and pA and pB are as in Figure B.1 (and where we
use the convention that the sum over an “interval” of the form [x, y] with y < x is
zero). By definition, total profits in the c sub-problem are zero, Π∗(c̄; c) = 0. Thus,
showing that Π∗(ĉ; c) > 0 for all ĉ > c implies that profits of (ĉ, c̄] are negative
which is equivalent to statement 2 in the lemma and will thus complete the proof.
To that end, note first that all types c′ ∈ [c, cn

A) have Π(~An(c′, c); c′) > 0 since all
contracts in the shaded area with corners at (1, pA), (1, pB), (q(c), p(c)) are above
the zero-profit lines for types c′ < cn

A. So Π∗(ĉ; c) > 0 for all ĉ ≤ cn
A. Similarly, all

types c′ ∈ (cn
B, c̄] have Π(~An(c′, c); c′) < 0, since contracts in the shaded area are

below c′ types’ zero-profit line. Hence, profits for the sub-group (cn
B, c̄] are negative

and that for [c, cn
B] positive. Thus, Π∗(ĉ; c) > 0 for all ĉ ≥ cn

B. It remains to establish
Π∗(ĉ; c) > 0 for ĉ ∈ [cn

A, cn
B].

Observe that for each type,

Π(~An(c′, c); c′) ≥ pA − c′ = p(c) + cD− c′ ≥ cn
M − c′ − (1− c)D, (B.4)

where we use the bounds on pA and cn
M(c) derived above (and the fact that (1, pA)

is the least profitable contract in the shaded area of Figure B.1 for all types).
For ĉ ∈ [cn

A, cn
B], taking D < Z/3, and taking an f n(c′)-weighted sum of ex-

pression (B.4) we have (using Equation (B.1), the definition of cn
B and pB, and the

bound u(W − pB) ≥ u(W − p(c)− D) to show cn
B ≤ p(c) + D ≤ cn

M + (1− c)D <
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cn
M + Z/3 ≤ cH):

Π∗(ĉ; c) ≥ (Fn(ĉ)− Fn(c))
(
cn

M(c)−EFn [c′|c′ ∈ [c, ĉ]]− (1− c)D
)

> (Fn(ĉ)− Fn(c))
[
(cM − Z/3)−EFn [c′|c′ ∈ [c, cn

B]]− Z/3
]

≥ (Fn(ĉ)− Fn(c))
[
cM −EFn [c′|c′ ∈ [c, cH]]− 2Z/3

]
= (Fn(ĉ)− Fn(c)) [cM − cn

L − 2Z/3]

≥ (Fn(ĉ)− Fn(c)) [cM − cL − Z] ≥ 0 (B.5)

which completes the proof.

B.2 Proof of Theorem B.1

In the following we prove that for any c∗ < c there exists an N′ such that for all
K > 0 there exists δ > 0 such |V̂n(c, T) − V̂n(c, 0)| < ε for all T < δ and all
c ∈ [c, c∗] and n ≥ N′.

Recall that for ĉ ∈ Cn and any T ≥ 0, we define V̂(ĉ, T) as

V̂n(ĉ, T) ≡ max
{~An(c;ĉ)}c∈[ĉ,c̄]∩Cn

V(~An(c; ĉ); c) (B.6)

subject to

V(~An(c; ĉ); c) ≥ V(~An(c′; ĉ); c) ∀c, c′ ≥ ĉ with c, c′ ∈ Cn and
(B.7)

V(~An(c; ĉ); c) ≥ V̄n(c) ∀c ≥ ĉ with c ∈ Cn and (B.8)

∑
c∈[ĉ,c̄]∩Cn

Π(~An(c; ĉ); c) f n(c) ≥ −T. (B.9)

By definition, V̄n(c) = V̂n(c, 0). For any c1, c2 ∈ Cn with c1 ≤ c2 define

Tn(c2; c1) = ∑
c∈Cn∩[c1,c2)

f n(c)Π(~An(c; c1); c) (B.10)

as the profit of types [c1, c2) in the original solution {~An(c; c1)}c∈Cn∩[c1,c̄] to the c1

sub-problem. Since the sum of profits over all types [c1, c̄] ∩ Cn is zero in the c1

type’s MWS sub-problem for the nth discretization, Tn(c2; c1) is the cross-subsidy
to the group [c2, c̄] in the solution to that sub-problem.
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It is equivalent to formulate allocations in utility space (uL, uNL) instead of in
coverage-price space (q, p) due to the binary wealth structure in the RS model.
As a consequence, the program defining V̂n(p, T) re-formulated in utility space
has a linear objective function, linear incentive compatibility and minimum utility
constraints, and a concave budget constraint. It follows that V̂n(p, T) is concave in
T and hence that

V̂n(c, T)− V̂n(c, 0) ≤ T
∂V̂n(c, 0)

∂T
. (B.11)

The following Lemma allows us to bound ∂V̂n(c,0)
∂T by some K uniformly in c and

n (for n > N for some sufficiently large N):

Lemma B.2. For any c∗ < c̄ there exists an N and a K such that ∂V̂n(c,0)
∂T ≤ K for all

c in[c, c∗] ∩ Cn and n > N.

Proof. Choose N and D as in Lemma B.1 and consider any c ≤ c∗ and any n > N.
If case 2. of that Lemma holds for this c and n, then none of the minimum utility
constraints bind in the MWS sub-problem for type c in the nth discretization. By
the envelope theorem, we can compute the welfare effects of a small increase in T
via a uniform marginal increase ∆ > 0 in utility across all types and both states, so:

∂V̂n(c, 0)
∂T

=
∆

∑c′∈Cn,c′≥c f n(c′)∆
[

1−c′
u′(u−1(un

NL(c
′,c))) +

c′
u′(u−1(un

L(c
′,c)))

] (B.12)

≤ u′(W − 1)
1− Fn(c)

≤ u′(W − 1)
1− Fn(c∗)

≤ u′(W − 1)
1− F(c∗)

≡ K1, (B.13)

where the denominator of (B.12) is the total resource cost of marginally increasing
everyone’s utility by ∆ in both states, and un

L(c
′, c) and un

NL(c
′, c) are the c′ type’s

utility in the loss and no loss state in the c type’s sub-problem, respectively.
If case 1. of Lemma B.1 holds, on the other hand, we can compute the welfare

consequences of a small increase in T by using that transfer to slide the c type
down and to the left along the cn+ ≡ c + 1

2n type’s (the next lowest type’s) indif-
ference curve. A straightforward computation of the welfare consequences of this
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marginal increase yields:

∂V̂n(c, 0)
∂T

=
(1− c)/(1− cn+)− c/cn+

f n(c)
(

c
u′(u−1(un

L(c,c)))(−1/cn+) + 1−c
u′(u−1(un

NL(c,c)))/(1− cn+)
) (B.14)

≤ 1

f (1− c)c
(

1
u′(u−1(un

NL(c)))
− 1

u′(u−1(un
L(c)))

) (B.15)

≤ 1
f minc′∈[c,c̄](1− c′)c′

1

minh∈[W−1,W]

[
1

u′(h) −
1

u′(h−D)

] (B.16)

≡ K2 (B.17)

Taking K = max{K1, K2} completes the proof.

By Lemma B.2, for sufficiently large N, n > N we find that:

V̂n(c, T)− V̂n(c, 0) ≤ TK, (B.18)

which proves Theorem A.1.

C Equilibrium Construction

C.1 Setup

• A continuous distribution of types c with density f (c) on support [c, c̄].

• Quasilinear preferences V(q, p; c) = ν(q; c)− p satisfying

∂ν

∂q
= νq > 0,

∂2ν

∂q2 = νqq < 0, and
∂2ν

∂q∂c
= νqc ≥ 1.

• An MWS equilibrium is an allocation {q(c), p(c)}c∈[c,c̄] solving

0 = max
{(q(c),p(c))}c∈[c,c̄]

∫ c̄

c
(p(c)− q(c)c) f (c)dc (C.1)

subject to ν(q(c); c)− p(c) ≥ ν(q(c′); c)− p(c′) ∀c, c′ ∈ [c, c̄], (C.2)

and ν(q(c); c)− p(c) ≥ V̄(c) ∀c ∈ [c, c̄], (C.3)
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where V̄ is a function with the property that for all ĉ ∈ [c, c̄] the value of the
program

max
{(q(c),p(c))}c∈[ĉ,c̄]

∫ c̄

ĉ
(p(c)− q(c)c) f (c)dc (C.4)

subject to ν(q(c); c)− p(c) ≥ ν(q(c′); c)− p(c′) ∀c, c′ ∈ [ĉ, c̄] (C.5)

and ν(q(c); c)− p(c) ≥ V̄(c) ∀c ∈ [ĉ, c̄] (C.6)

is 0.

In this setup, the following holds:

1. The assumptions on preferences imply that the solution q∗(c) to the problem
maxq[ν(q; c)− qc] is unique and weakly increasing in c. They also imply that
indifference curves in (q, p) space are concave and satisfy the single crossing
property.

2. Instead of working with allocations (q(c), p(c)), it is equivalent to work with
allocations u(c) = ν(q(c); c)− p(c) and q(c) or p(c).

3. It will turn out to be more convenient to work with (q(c), u(c)) allocations.
In the next section, we take a “first order approach”, assuming that insurance
coverage is strictly increasing with cost type, q(c′) > q(c) for all c′ > c. Then
(due to single crossing), incentive compatibility is equivalent to the local in-
centive constraint

u′(c) = νc(q(c); c). (C.7)

If q(c) is not strictly increasing, bunching needs to be considered, as we do in
Section C.3.
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C.2 Construction

C.2.1 Step 1

Fix ĉ ∈ [c, c̄]. Consider the solution to the relaxed, primal (sub-)problem for types
[ĉ, c̄]:

max
{(q(c),u(c))}c∈[ĉ,c̄]

u(ĉ) (C.8)

subject to

u′(c) = νc(q(c); c) ∀c ∈ [ĉ, c̄]; [multiplier λη(c)] (C.9)

and ∫ c̄

ĉ
(ν(q(c); c)− u(c)− q(c)c) f (c)dc ≥ K [multiplier λ]. (C.10)

We call this Program AK(ĉ)
The Lagrangian for AK(ĉ), after integrating by parts the incentive constraint, is:

L = u(ĉ) + λ
∫ c̄

ĉ

(
ν(q(c); c)− u(c)− cq(c)− K̂

)
f (c)dc

− λ
∫ c̄

ĉ

(
η′(c)u(c)− η(c)νc(q(c); c)

)
dc + λ [η(c̄)u(c̄)− η(ĉ)u(ĉ)] ,

(C.11)

with K̂ = K
(∫ c̄

ĉ f (c)dc
)−1

. The first order conditions for this Lagrangian with
respect to u(c) and q(c) can be used to fully characterize the solution. From the
former:

η′(c) = − f (c), (C.12)

and, from the latter, for interior c:

(
νq(q(c); c)− c

)
f (c) = η(c)vqc(q(c); c). (C.13)

Since the solution will have no distortion at the top (νq(q(c̄); c̄)− c̄ = 0 at q(c̄) =
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q∗(c̄)), the solution must, by continuity, have η(c̄) = 0, and hence, from (C.12),

η(c) = 1− F(c). (C.14)

We can then write (C.13) as:

νq(q(c); c)− c
vqc(q(c); c)

=
1− F(c)

f (c)
. (C.15)

Let q0(c) be the solution to (C.15). Note that this solution is independent of ĉ and K.
Denote by q(c; ĉ) the solution of Program A0(ĉ) for type c ≥ ĉ in type ĉ’s sub-

problem. It follows that the allocation solving A0(ĉ) for any given ĉ ∈ [c, c̄) has:

q(c; ĉ) = q0(c) and u(c; ĉ) = u0(c) + T0(ĉ), (C.16)

where, by (C.9),

u0(c̄) ≡ ν(q0(c̄); c̄)− c̄q0(c̄), (C.17)

u0(c) ≡ u0(c̄)−
∫ c̄

c
νc(q0(c′); c′)dc′, (C.18)

and

T0(ĉ) ≡ 1
1− F(ĉ)

∫ c̄

ĉ

[
ν(q0(c̃); c̃)− u0(c̃)− c̃q0(c̃)

]
f (c̃)dc̃. (C.19)

The intuition for the preceding is as follows. First, we know that the solution must
have q(c; ĉ) ≡ q0(c) for any K and ĉ. If we knew u(c̄; ĉ), we could then integrate
the (local) incentive constraint to find u(c) for any c. We find u(c̄; ĉ) in two steps.
First, we normalize u(c̄; ĉ) to optimal and fair insurance, as in (C.17). Second, we
find the associated u(c; ĉ) allocation for all cs (by integrating the local incentive
constraints (C.18)) and compute the resulting per-person surplus T0(ĉ) (per (C.19))
associated with the resulting allocation. Third, we balance the resource constraint
by reducing prices (thereby increasing utility) uniformly by T0(ĉ), holding q(c; ĉ)
fixed. Since this uniform transfer maintains incentive compatibility and balances
the budget, the result is the solution.

44



The solution to A0(ĉ) will be the solution to the MWS sub-problem for type ĉ
if (1) q0(c) is weakly increasing and (2) the minimum utility constraints (C.6) are
satisfied (since the MWS sub-problem program differs only from Program A0(ĉ) in
that the latter drops those constraints). If T0(ĉ) is decreasing in the neighborhood
around c̄, then we can, per the following lemma, easily verify that the minimum
utility constraint V̄(ĉ) = u0(ĉ) + T0(ĉ) “works” for ĉs in this neighborhood. Intu-
itively: as ĉ is lowered within this range, the per-person transfer T0(ĉ) and hence
u(c; ĉ) increase—so the minimum utility constraints are indeed slack for all c > ĉ
types. Figure C.1 illustrates this increasing “slack” in the minimum utility con-
straint when reducing ĉ. This leads us to the following lemma:

Lemma C.1. Let c1 ≡ sup
{

c ∈ [c, c̄]| dT0(c)
dc > 0

}
. Then for all ĉ ∈ [c1, c̄], V̄(ĉ) =

u0(ĉ) + T0(ĉ) are MWS reservation utilities on [c1, c̄].

Proof. The result is trivial if c1 = c̄. If c1 < c̄, observe that, because q0(c) is inde-
pendent of ĉ and T0 is non-increasing on [c1, c̄], we have, for ĉ ∈ [c1, c̄] and c′ > ĉ,
u(c′; ĉ) ≥ u(c′; c′) ≡ u0(c′) + T0(c′) = V̄(c′). Hence, with V̄(ĉ) so defined, the
solution to Program A0(ĉ) satisfies the minimum utility constraints (and yields 0
profits). It is thus a solution to the MWS (sub)-problem for type ĉ.

Figure C.1: Step 1: Illustration.
The figure illustrates the slack in minimum utility constraints during lowering ĉ from cA to cB and
c1 in step 1 of the construction.

ҧ𝑐𝑐1

Δ𝑉 𝑐; 𝑐𝐴
Δ𝑉 𝑐; 𝑐𝐵
Δ𝑉 𝑐; 𝑐1

𝑐𝐵 𝑐𝐴

C.2.2 Step 2

By construction, T0(ĉ) is increasing in ĉ to the left of c1, so the solution to Program
A0(c1 − ε) violates the minimum utility constraints for type c1 − ε for sufficiently
small ε. The minimum utility constraints must therefore bind in the solution to the
MWS sub-problem for types c1 − ε (again, for sufficiently small ε), as Figures C.2
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illustrates. That is, there will be an interval of break-even types to the left of c1

(and c1 breaks even in the solution of Program A0(c1)).

Figure C.2: Step 2 – Intermediate stage: Illustration.
The figure illustrates the slack in minimum utility constraints during lowering ĉ in step 2 of the
construction.

Δ𝑉 𝑐; 𝑐𝐶

ҧ𝑐𝑐1
𝑐𝐵 𝑐𝐴

𝑐2 𝑐𝐶

For these break-even types, it is u(c) = ν(q(c); c)− cq(c), and hence

u′(c) = νq(q(c); c)q′(c) + νc(q(c); c)− q(c)− cq′(c), (C.20)

or, using incentive compatibility:

q′(c) =
q

νq(q(c); c)− c
. (C.21)

This differential equation can be solved (uniquely) for q1(c) given the initial con-
dition q1(c1) = q0(c1). The local incentive constraint can then be integrated to find
u1(c) using the initial condition u1(c1) = V̄(c1).26

To find the the lowest break-even type, define

g(c) ≡ d
dc

[
(νq(q1(c); c)− c) f (c)

vcq(q1(c); c)

]
+ f (c), (C.22)

and let c2 ≡ sup
{

c ∈ [c, c1)|g(c) < 0
}

. Then, V̄ for types ĉ ∈ [c2, c1) may be found
by evaluating these types’ utility at (q1(ĉ), u1(ĉ)), as the next lemma shows and
Figure C.3 illustrates.

Lemma C.2. For types ĉ ∈ [c2, c1), the solution to the ĉ-subproblem is

q(c; ĉ) =

q0(c), if c ∈ [c1, c̄],

q1(c), if c ∈ [c2, c1)
and p(c; ĉ) =

u0(c) + T0(c1), if c ∈ [c1, c̄],

u1(c), if c ∈ [c2, c1)

26The solution satisfies u′(c) = νc(q(c); c) or, equivalently, p′(c) = νq(q(c); c)q′(c).
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and the MWS reservation utility is V̄(ĉ) = u1(ĉ) for ĉ ∈ [c2, c1).

Proof. The allocation {(q̂(c), û(c))}c∈[ĉ,c̄] with (q̂(c), û(c)) = (q1(c), u1(c)) for c ∈
[ĉ, c1] and (q̂(c), û(c)) = (q0(c), u0(c) + T0(c1)) for c ∈ [c1, c̄] is incentive compati-
ble, satisfies the minimum utility constraints with the V̄ defined in the claim, and
yields exactly zero profits. Moreover, as we will show shortly, it is (constrained)
Pareto optimal as long as g(c) ≥ 0. Since g(ĉ) ≥ 0 for all ĉ ∈ [c2, c1], it follows that
for each such ĉ this allocation solves the MWS problem given this V̄.

To see that it is constrained Pareto optimal when g(c) ≥ 0, we follow Werning
(2007). Take any incentive compatible, break-even allocation (q∗(c), u∗(c)). To test
if this is constrained Pareto efficient, consider the Program X of maximizing prof-
its, subject to incentive compatibility and the “utility constraints” 0 = u(c)− u∗(c):

max
{(q(c),u(c))}c∈[c,c̄]

∫ c̄

c
(ν(q(c); c)− u(c)− q(c)c) f (c)dc (C.23)

subject to 0 = νc(q(c); c)− u′(c) ∀c ∈ [c, c̄]; [multiplier η(c)] (C.24)

and 0 = u(c)− u∗(c) ∀c ∈ [c, c̄]; [multiplier ψ(c)]. (C.25)

The Lagrangian, after integrating the incentive constraint by parts, is:

L =
∫ c̄

c
(ν(q(c); c)− u(c)− cq(c)) f (c)dc +

∫ c̄

c
(u(c)− u∗(c))ψ(c)dc

−
∫ c̄

c

(
η′(c)u(c)− η(c)νc(q(c); c)

)
dc + [η(c)u(c̄)− η(c)u(ĉ)] . (C.26)

As in Werning (2007), the original allocation is constrained Pareto optimal pre-
cisely when the Lagrange multipliers ψ(c) on the utility constraints are all non-
negative. The first order conditions for this problem are, with respect to u(c),

η′(c) = ψ(c)− f (c)

and, with respect to q(c),

(νq(q(c); c)− c) f (c)− η(c)vcq(q(c), c) = 0.

Solving the latter for η, differentiating, substituting into the former, and evaluating
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at the allocation proposed in this lemma yields

η′(c) =
d
dc

(νq(q∗(c), c)− c) f (c)
vcq(q∗(c), c)

= ψ(c)− f (c)

and, thus,
g(c) = ψ.

Hence, the proposed allocation is constrained Pareto optimal precisely when g(c) ≥
0.

Figure C.3: End of Step 2: Illustration.
The figure illustrates the slack in minimum utility constraints at the end of step 2 of the construc-
tion.

Δ𝑉 𝑐; 𝑐2

ҧ𝑐𝑐1
𝑐𝐵 𝑐𝐴

𝑐2

C.2.3 Step 3

As we lower c to c2− ε, we (by construction) fail the constrained Pareto optimality
test if assigning the break-even allocation from Step 2 to types [c2 − ε, c2). Since
the allocation for types c ∈ [c2, c̄] is constrained Pareto optimal, this failure can
only happen insofar as there is scope for Pareto-improving transfers from types
c ∈ [c2 − ε, c2) to the types above. As these Pareto-improving transfers are imple-
mented, minimum utility constraints become slack for some interval [c2− ε, c2 + δ]

(with the same MWS-sub-problem allocation obtaining above c2 + δ). Figure C.4
provides an illustration.

In order to find V̄(c2 − ε), we need to characterize the relationship between
δ and ε and to find a condition that determines the start of the next lower-cost-
type “break-even interval” c3. The rationale is as follows: for any ε, use the FOCs
(C.15) and the “initial conditions” at c2 + δ to solve for the allocation for types [c2−
ε, c2 + δ] (given that minimum utility constraints are slack). The initial condition
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Figure C.4: Step 3 – Intermediate Stage: Illustration.
Minimum utility constraints become slack as Pareto-improving transfers from types [c2 − ε, c2] to
[c2, c2 + δ(ε)] are implemented.

Δ𝑉 𝑐; 𝑐2 − 𝜀

ҧ𝑐𝑐1
𝑐𝐵 𝑐𝐴

𝑐2 𝑐2 + 𝛿(𝜀)𝑐2 − 𝜀

q2(c2 + δ) = q1(c2 + δ) implies by (C.13) that

η(c2 + δ) =

(
νq(q1(c2 + δ); c2 + δ)− (c2 + δ)

)
f (c2 + δ)

vqc(q1(c2 + δ); c2 + δ)
. (C.27)

Combining this with the FOC from (C.12) yields

η(c) = η(c2 + δ) +
∫ c2+δ

c
f (c′)dc′. (C.28)

From there, we solve

νq(q(c); c)− c
vqc(q(c), c)

=
η(c)
f (c)

(C.29)

to characterize the optimal coverage q2(c) when minimum utility constraints do
not bind. Finally, u2 is given by the initial condition u2(c2 + δ) = u1(c2 + δ) and
integrating the local incentive compatibility constraint u′(c) = νc(q(c); c).

We find the upper end of the interval cδ = c2 + δ(ε) by integrating profits “up”
from c2 + ε until the break-even point, which defines cδ by

∫ cδ

c2−ε
ν(q2(c′); c′)− u2(c′)− q2(c′)c′dc′ = 0. (C.30)

Defined as such, the minimum utility at cε = c2 − ε is

V̄(cε) = u2(cε). (C.31)

To determine the end-point (i.e., lowest ε) of Pareto-improving transfers, define by
ε∗ > 0 the smallest point such that either (A) δ(ε∗) = c1 − c2, or (B) type c2 − ε∗

49



exactly breaks even.
In case (A), the whole break-even segment disappears. If there exists a larger

break-even segment (c′ε, c′δ), test for Pareto-improving transfers from (c2 − ε∗ −
ε′, c′ε) to (c′ε, c′δ) for small ε′, following step 3. If there does not exist a larger break-
even segment, test for Pareto-improving subsidies up to the highest cost type by
calculating total profits akin to step 1, and add lower cost types as long as these
weakly increase total profit. Once there exist no Pareto-improving transfers, the
lowest considered cost type breaks even and a new break-even segment begins, as
Figure C.5 illustrates.

In case (B), a new break-even segment begins at cε∗ , as in Figure C.6. Then, in
both cases, refer to step 2 starting at c1 redefined as c1 = cε∗ .

Figure C.5: Step 3 (Case (A)) and reiteration of step 2: Illustration.
A new break-even segment begins after implementing Pareto-improving transfers across [c3, c2 +

δ∗] that partially “eat up” the previous break-even segment.

Δ𝑉 𝑐; 𝑐𝐷

ҧ𝑐𝑐1
𝑐𝐵 𝑐𝐴

𝑐2 𝑐2 + 𝛿∗𝑐3𝑐𝐷

Figure C.6: Step 3 (Case (B)) and reiteration of Step 2: Illustration.
A new break-even segment begins after implementing Pareto-improving transfers that fully “eat
up” the previous break-even segment.

Δ𝑉 𝑐; 𝑐𝐷

ҧ𝑐𝑐1
𝑐𝐵 𝑐𝐴𝑐2𝑐3𝑐𝐷

Finally, note that the above procedure does not only determine the reservation
utilities V̄(c) but also the equilibrium allocation, which is the allocation that deter-
mines V̄(c).
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C.3 Bunching

The solution described in the previous section does not necessarily satisfy the
monotonicity constraint q(c) ≥ q(c′) for all c ≥ c′. In particular, while q′(c) ≥ 0 by
construction in an break-even interval (see step 2), the construction in steps 1 and
3 may violate monotonicity. In this case, we need to add the term

∫
ξ(c)q′(c)dc to

the Lagrangian, where ξ(c) is the multiplier on the monotonicity constraint. By
integrating this term by parts, we yield

ξ(c̄′)q(c̄′)− ξ(ĉ)q(ĉ)−
∫

ξ ′(c)q(c)dc (C.32)

for each interval [ĉ, c̄′] of non-binding minimum utility constraints. At the upper
end-point c̄′ (which is either c̄ or the lowest cost type in the next break-even group),
monotonicity holds by construction, and thus ξ(c̄′) = 0. Adding (C.32) does not
affect the FOC w.r.t. u, thus, η stays the same (i.e., as in Section C.2). However, it
changes the FOC for interior q by ξ ′,

(
νq(q(c); c)− c

)
f (c)− ξ ′(c) = η(c)vqc(q(c), c) (C.33)

if the minimum utility constraint does not bind for c. If, instead, it binds, it is
ξ ′(c) = 0.

Denote by q̃ : [ĉ, c̄]→ [0, ∞) the solution constructed as in Section C.2. Assume
that q̃′(c) < 0 in some interval I ⊂ [ĉ, c̄]. Following the rationale of Mussa and
Rosen (1978), we will choose qr > 0 and cA, cB ∈ [ĉ, c̄], cA < cB, I ⊂ [cA, cB], and
allocate the same coverage qr to all types c′ ∈ [cA, cB]. Suppose, first, that mono-
tonicity does not bind at cA and cB. Since η is unchanged, a necessary condition is
that q̃(c′) = qr(c′) at both c′ ∈ {cA, cB}. Since ξ(c′) = 0 for c′ ∈ {cA, cB}, it also
holds that ∫ cB

cA

ξ ′(c)dc = 0.

And we know ξ ′ given cB: from (C.33) and the fact that q(c) = q̃(cB) ≡ qr for
c ∈ [cA, cB], it is

ξ ′(c) =
(
νq(qr, c)− c

)
f (c)− η(c)vqc(qr, c) ∀c ∈ [cA, cB]. (C.34)

These conditions are sufficient to determine cA, cB, and qr.
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Suppose, second, that the monotonicity binds at cA. This is the case only if
q̃′(ĉ) < 0, which requires ĉ ≡ cA. Then, ξ(cA) 6= 0 while ξ(cB) = 0. Hence,

ξ(cA) = ξ(cB)−
∫ cB

cA

ξ ′(c′)dc′ = −
∫ cB

cA

ξ ′(c′)dc′. (C.35)

ξ(cA) = ξ(ĉ) may be found by using the FOC with respect to q(ĉ), which is

(
νq(qr, ĉ)− ĉ

)
f (ĉ)− ξ(ĉ)− ξ ′(ĉ) = η(ĉ)vqc(qr, ĉ) (C.36)

and thus

ξ(ĉ) =
(
νq(q(ĉ), ĉ)− ĉ

)
f (ĉ)− η(ĉ)vqc(q(ĉ), ĉ)− ξ ′(ĉ) = −

∫ cB

cA

ξ ′(c′)dc′, (C.37)

which implies

(
νq(q(ĉ), ĉ)− ĉ

)
f (ĉ)− η(ĉ)vqc(q(ĉ), ĉ) = lim

x→0
−
∫ cB

cA+x
ξ ′(c′)dc′ =

∫ cB

cA

ξ ′(c′)dc′.

(C.38)
Together with (C.34), this determines cB and qr.

C.4 Numerical Implementation

C.4.1 Preliminaries

We start with a discretization of the type space CN = {c1, ..., cN}, enumerated
such that ci < ci+1, where the number of types N describes the degree of dis-
cretization. Assume that ci+1 − ci ≡ ∆ > 0 for all i. The discretized distri-
bution of types is described by masses f̂i, i = 1, ..., N.27 Type ci yields utility
V(q, p; ci) = ν(q; ci) − p from contract coverage q at price p. We determine the
allocation (~Ai)i=1,...,N = (qi, pi)i=1,...,N by constructing reservation utilities V̄i. In
this process, we will determine whether minimum utility constraints hold in equi-
librium, which will enable us to simultaneously determine the equilibrium alloca-
tion.

27Note that f̂i/∆ is thus an approximation of f (ci).
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C.4.2 Constructing V̄ and solving for the equilibrium allocation

In the following, we provide a pseudo-code that implements the construction of V̄
and equilibrium allocations based on Section C.2.

Step 1. Non-binding minimum utility constraints.
Initialize with the highest cost type’s optimal contract at a fair price, q0

N = q∗N and
p0

N = q∗NcN. For i = 1, ..., N − 1, determine q0
i by numerically solving28

νq(qi; ci)− ci

vqc(qi; ci)
=

1−∑i
j=1 f̂ j

f̂i∆−1
(C.39)

for qi, and then use the solution to compute

p0
i = p0

i+1 + νq(q0
i+1; ci+1)(q0

i − q0
i+1) (C.40)

and

T0
i =

N

∑
j=i

(
p0

j − cjq0
j

) f̂ j

∑N
k=i f̂k

. (C.41)

To find the cut-off value c1, define29

i1 = max
{

i = 2, ..., N : T0
i − T0

i−1 > 0
}

. (C.42)

If min{q0
j+1 − q0

j : j = i, ..., N − 1} ≥ 0, the solution satisfies monotonicity and we
can directly use it. Otherwise, use ironing techniques a la Mussa and Rosen (1978)
for each set {i, ..., N} as described in Section C.4.3. It is

V̄i = ν(q0
i ; ci)− p0

i + T0
i ∀i = i1, ..., N. (C.43)

Record as candidates for the final equilibrium allocation

q f in
i = q0

i and p f in
i = p0

i − T0
i1 ∀i = i1, ..., N. (C.44)

If i1 = 1, we have found reservation utilities V̄i=1,...,N and the equilibrium alloca-

28To account for potentially multiple local optima, it is useful to specify the optimal coverage for
the largest cost type, q∗N , as an upper bound when solving (C.39).

29If T0
i − T0

i−1 ≤ 0 for all i = 2, ..., N, then let i1 = 1.
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tion (q f in
i , p f in

i )i=1,...,N; else, go to Step 2.

Step 2. Break-even types.
Define q1

i1 = q0
i1 and p1

i1 = p0
i1 .30 The coverage for break-even types is found by

recursively solving31

q1
j = q1

j+1 + (cj − cj+1)
q1

j+1

νq(q1
j+1; cj+1)− cj+1

∀j = 1, ..., i1 − 1, (C.45)

and prices are32

p1
j = p1

j+1 + (cj − cj+1)
νq(q1

j+1; cj+1)q1
j+1

νq(q1
j+1; cj+1)− cj+1

∀j = 1, ..., i1 − 1. (C.46)

The cut-off value may be found by first defining

ĝj = f̂ j∆−1
νq(q1

j ; cj)− cj

vqc(q1
j ; cj)

, ∀j = 1, ..., i1 − 1, (C.47)

then numerically differentiating it,

ĝ′j =
ĝj − ĝj−1

cj − cj−1
, ∀j = 2, ..., i1 − 1, (C.48)

and letting ĝ′1 = ĝ′2. Finally, defining the cut-off value by

i2 = max
{

i = 1, ..., i1 − 1 : ĝ′i + f̂i∆−1 ≤ 0
}

, (C.49)

it is
V̄i = ν(q1

i ; ci)− p1
i ∀i = i2, ..., i1 − 1. (C.50)

30As the type space becomes more dense, it is q1
i1 ci1 ≈ p0

i1 by construction.
31Alternatively, one may use a discrete variant by solving V(qi, qici; ci+1) = V(q1

i+1, q1
i+1ci+1; ci+1)

for qi. In some instances we tested, this provided a numerically more stable implementation.
32Alternative, one may directly specify break-even prices, p1

j = q1
j cj.
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Record as candidates for the final equilibrium allocation

q f in
i = q1

i and p f in
i = p1

i ∀i = i2, ..., i1 − 1. (C.51)

If i2 = 1, we have found reservation utilities V̄i=1,...,N and the equilibrium alloca-
tion (q f in

i , p f in
i )i=1,...,N; else, go to Step 3.

Step 3. Pareto-improving transfers.
Let ε = 0, iε = i2, and Kε > 0. As long as Kε > 0 repeat:

(1) Let ε← ε + 1 and iε ← i2 − ε.

(2) Let K > 0 and δ = 0. As long as δ < i1 − i2 and K > 0, repeat:

(i) Let δ← δ + 1 and define iδ = i2 + δ, q2
iδ
= q1

iδ
, p2

iδ
= q1

iδ
ciδ , and

ηiδ =
(νq(q2

iδ
; ciδ)− ciδ) f̂iδ ∆−1

vqc(q2
iδ

; ciδ)
.

(ii) For all j = iε, ..., iδ − 1: solve

νq(q2
j ; cj)− cj

vqc(q2
j ; cj)

=
ηiδ + ∑iδ

h=(j+1) f̂h

f̂ j∆−1
(C.52)

to determine q2
j (if there is bunching, use ironing as in Section C.4.3 for

each j), use the incentive constraint to recursively determine the price,

p2
j = p2

j+1 + νq(q2
j+1; cj+1)(q2

j − q2
j+1), (C.53)

and define as the profit of types {iε, ..., iδ}

K =
iδ

∑
h=iε

(p2
h − q2

hch) f̂h. (C.54)

(3) If δ = i1− i2, the break-even group disappears. If there exists another (“higher”)
break-even group, check for Pareto-improving transfers to the lowest cost types
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in this higher break-even group using the same procedure above.33 If δ =

i1 − i2 and there does not exist another break-even group, compute the total
profit in {iε, ..., N} akin to Step 1.

Otherwise,
V̄iε = ν(q2

iε ; ciε)− p2
iε (C.55)

and
Kε = p2

iε − q2
iε ciε . (C.56)

If Kε > 0, go to (1). If Kε ≤ 0 and iε > 1, another break-even interval begins: go
to Step 2. If iε = 1, stop.

Finally, store the equilibrium allocation (q f in, p f in) which is given by (q2
j , p2

j )iε,...,iδ .

C.4.3 Bunching and ironing

We start with a function q : {1, ..., n} → [0, ∞) that does not satisfy monotonicity,
i.e., is strictly decreasing for some set I ⊆ {1, ..., n}. Thus, it displays "wiggles",
i.e., local minima and maxima. We implement the ironing technique described in
Section C.3. The procedure is as follows:

Step 1. Determine local maxima and minima.
Define by

h = {i ∈ {1, ..., n− 1} : qi+1 − qi < 0} (C.57)

the set of all (left-)points at which q is decreasing. Define by

b = {j ∈ h : (j− 1) /∈ h} (C.58)

the set of the smallest (in a neighborhood) of these points. These are local max-
ima. We enumerate this set as b1, ..., bH with H = |b| such that bi < bi+1 and
{b1, ..., bH} = b. Similarly, define by

l = {i ∈ {1, ..., n− 1} : qi+1 − qi > 0} (C.59)

33It is possible that such transfers exist but were not detected earlier due to the availability of
even lower cost types j < iε.
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the set of all (left-)points at which q is increasing and by

L′ = {j ∈ h : (j− 1) /∈ h} (C.60)

the smallest (in a neighborhood) of these points, which are local minima. Let
L = L′ ∪ {1, n}, enumerated as L1 < ... < LHL with HL = |L|.

Step 2. Ironing.
As long as |b| > 0:

(i) Let bh = arg min b. Define bl = max{i ∈ L : i ≤ bh} and bu = min{i ∈ L : i >
bh}. Let b̂ = arg mini∈{bh,...,n} qi.

(ii) For j = 0, ..., b̂− bh determine

(a) qr =

qbh−j, if bh − j ≥ 1 & bh − j ≥ bl

qbh+j, else,

cA = min{i ∈ {bl, ..., 1} : qi ≥ qr}, and cB = min{i ∈ {bu, ..., n} : qi ≥ qr}.

(b) For k = cA, ..., cB define

ξ ′k = (νq(qr; ck)− ck) f̂k∆−1 − ηkνqc(qr; ck), (C.61)

where η is defined as in Section C.4, and define

Kh =
cB

∑
k=cA

ξ ′k∆.

(iii) Determine the optimal ironing threshold by ĥ = arg min{|Kh|} and use the
corresponding qr, cA, and cB. Remove all bl < cB from b.
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Figure C.7: Illustration of ironing.

(a) Typical case. (b) Knife-edge case.
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C.5 Numerical stability and efficiency

Figure C.8: Numerical stability and efficiency of continuous equilibrium construc-
tion compared to Spence’s recursive programs.
Figures depict (a) the maximum relative change in the equilibrium vector of prices p (coverage q)
when increasing the equidistant discretization of the type space by 5 additional types and (b) the
computation time to solve for the equilibrium. We distinguish between solving Spence’s recursive
optimization programs (using Matlab’s fmincon routine with an interior-point algorithm, a maxi-
mum of 5,000 iterations, and 10,000 function evaluations) and solving the continuous construction
we propose in Section 4. We indicate by filled (empty) squares that the final Spence optimization
program for the lowest cost-type converges (does not converge), whereby convergence is defined
by reaching an allocation that satisfies first-order optimality and constraints with tolerance 1e-6.
The example uses a uniform distribution of types with preferences as in Section 5.
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(a) Convergence of allocations.
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(b) Computation time.
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