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Abstract

Financial losses can have persistent effects on the financial system. This paper proposes an
empirical measure for the duration of these effects, Spillover Persistence. I document that
Spillover Persistence is strongly correlated with financial conditions; during banking crises,
Spillover Persistence is higher, whereas in the run-up phase of stock market bubbles it is
lower. Lower Spillover Persistence also associates with a more fragile system, e.g., a higher
probability of future crises, consistent with the volatility paradox. The results emphasize
the dynamics of loss spillovers as an important dimension of systemic risk and financial
constraints as a key determinant of persistence.

JEL classification: E44, G01, G12, G20, G32.
Keywords: Systemic Risk, Fragility, Financial Crises, Asset Price Bubbles, Fire Sales.



1 Introduction

Modern macro-finance models consider the presence of financial frictions. In such models,

adverse shocks tighten agents’ balance sheet constraints and, therefore, make them less willing

or able to hold assets, e.g., resulting in fire sales. This depresses asset prices further, amplifying

the initial shocks. Because it takes time for agents’ balance sheets to recover from large shocks,

such shocks have persistent effects. Conversely, in environments with loose financial constraints,

agents are better able to absorb shocks, which mitigates amplification effects. At the same time,

loose constraints motivate agents to take more risk, e.g., by increasing leverage, which, in turn,

makes the financial system more fragile, i.e., the probability of future crises increases.

Motivated by these dynamics, I propose a novel empirical measure for the persistent effects

of large losses within the financial system, called Spillover Persistence. Spillover Persistence is

the duration over which risk in the financial system remains elevated following a financial insti-

tution’s initial loss. The measure is, thus, related to the recovery period of balance sheets after

large losses. Underscoring this linkage to macro-finance models, I document that fluctuations in

Spillover Persistence reflect the amplification and fragility dynamics described above, focusing

on three key questions: (1) Does Spillover Persistence capture variation in financial constraints

and the resulting amplification effects? (2) Is Spillover Persistence related to fragility of the

financial system? (3) Does Spillover Persistence reflect new information relative to traditional

measures of systemic risk?

The existing literature has emphasized the persistent effects of financial crises. For example,

He and Krishnamurthy (2013) document that bond market spreads took about six months to

halve from their 2007-08 financial crisis peak levels to pre-crisis levels. This paper examines the

persistent effects of losses at a more granular level. To that end, I compute Spillover Persistence

at the firm-by-year level. Exploiting this rich variation, I shed light on its determinants and

relationship with amplification and fragility dynamics.

Spillover Persistence is defined as the systemic-risk–weighted average time-lag between ini-

tial losses of an individual financial institution and subsequent losses of the financial system.

Systemic risk measures, such as ∆CoVaR (Adrian and Brunnermeier (2016)) and Marginal

Expected Shortfall (MES; Acharya et al. (2017)), are typically based on equity return losses

and, thus, are readily available for every listed firm and with a long time series.1 For a given

systemic risk measure M I
τ , Spillover Persistence is computed in two steps. First, M I

τ is used to

measure the tail correlation between a financial institution’s initial losses and subsequent losses

of the financial system at different time-lags τ . Second, Spillover Persistence is the systemic-

risk–weighted average time-lag τ , similarly to the Macaulay duration:

τ̄ =

∫ τmax

τ=1 τ M I
τ dτ∫ τmax

τ=1 M I
τ dτ

. (1)

Therefore, Spillover Persistence measures persistence in the financial system’s response to an

1A possible concern is that Spillover Persistence picks up stock market illiquidity instead of loss spillover
dynamics. I address this concern by excluding firms with illiquid stocks (e.g., small firms) and documenting
that Spillover Persistence does not positively correlate with measures for stock market illiquidity. I also remove
predictable variation from equity returns and show that all baseline results continue to hold.
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institution’s initial losses: it is larger when an institution’s losses are followed by elevated risk

in the system over a longer time period.

Various systemic risk measures M I
τ can be used to compute Spillover Persistence in Equa-

tion (1). Traditional systemic risk measures mechanically respond to changes in stock market

volatility (Adrian and Brunnermeier (2016), Acharya et al. (2017), Benoit et al. (2017)). On the

one hand, amplification dynamics are closely linked to volatility: weaker amplification effects

correspond with lower volatility, yet simultaneously contribute to the build-up of fragility–a

phenomenon known as the volatility paradox (Brunnermeier and Sannikov (2014)). On the

other hand, fluctuations in volatility also mirror macroeconomic characteristics other than fi-

nancial conditions, such as economic uncertainty (Baker et al. (2016)) and industry growth

(Engle et al. (2013)). This interplay complicates the disentanglement of amplification dynamics

within the financial system. It is, thus, desirable that a measure for Spillover Persistence does

not mechanically respond to volatility. Therefore, I introduce a new systemic risk measure, the

Excess Conditional Shortfall Probability (∆CoSP), which does neither mechanically respond to

a financial institution’s nor the system’s volatility:

∆CoSPI
τ = P

(
−rSt+τ ≥ V aRS(q) | −rIt ≥ V aRI(q)

)
− q. (2)

∆CoSPI
τ is the probability that losses of the system exceed their Value-at-Risk (V aRS(q)) τ

days after large losses of institution I, compared to an average day. This measure is closely

related to ∆CoVaR, with the main difference that it is defined as the probability of large losses

instead of their Value-at-Risk, and, hence, does not mechanically increase with volatility. As

a result, Spillover Persistence based on ∆CoSP exhibits a much lower correlation with stock

market volatility (13%) compared to when it is based on ∆CoVaR (33%) or MES (44%).

I compute Spillover Persistence based on ∆CoSP for an international sample of more than

1,000 financial institutions, covering commercial banks, broker-dealers, insurers, and real estate

firms from more than 25 countries from 1985 to 2017. The average Spillover Persistence is

approximately one month, which means that large losses of an average institution are followed

by an increase in the system’s risk for about one month. Spillover Persistence substantially

differs from existing systemic risk measures. For example, its correlation with ∆CoVaR is

small (less than 10%) and variation in ∆CoVaR explains only 1% of the variation in Spillover

Persistence. Thus, Spillover Persistence captures a novel dimension of systemic risk.

In the first part of the main empirical analysis, I provide evidence that Spillover Persistence

positively correlates with tighter financial conditions. A 1 standard deviation increase in the

Chicago Fed’s National Financial Conditions Index (NFCI) is associated with an increase in

Spillover Persistence by 0.28 standard deviations. Spillover Persistence is also larger during

banking crises, namely approximately 2 days in the U.S. (and 4.5 days in the full sample of

countries), and it significantly increases with larger bond credit spreads and lower credit growth.

An important amplification mechanism is the forced selling of assets (“fire sales”), which

depresses asset prices and, thereby, constrains other agents (Shleifer and Vishny (1992), Brun-

nermeier and Pedersen (2009)). Thus, fire sales tighten financial conditions and, therefore,

might raise Spillover Persistence. To test this hypothesis, I exploit hurricane Katrina, which

made landfall in August 2005, as an exogenous shock to the liquidity of U.S. insurers exposed
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to the hurricane. Exposed insurers were forced to sell large volumes of their asset holdings to

pay hurricane-related insurance claims. Consistent with the hypothesis, Spillover Persistence is

significantly larger after the hurricane for exposed relative to unexposed insurers. This result

emphasizes the role of tight financial conditions, propagated to the financial system through

fire sales, as a determinant of Spillover Persistence.

Financial conditions are typically loose during the boom phase of asset price bubbles (Borio

and Lowe (2002), Brunnermeier and Oehmke (2013), Brunnermeier et al. (2020)). I test whether

Spillover Persistence captures such loose financial conditions by focusing on a large set of stock

market bubbles. The results show that Spillover Persistence is significantly lower during boom

episodes. During an average bubble boom, Spillover Persistence increases and is larger around

the bubble’s burst than during the early run-up phase, emphasizing the important role of

financial conditions.

In the second part of the main empirical analysis, I investigate whether fragility in the

financial system builds up in times with low Spillover Persistence, reflecting loose financial

conditions. In macro-finance models, leverage is a key driver of fragility. For example, the

volatility paradox in Brunnermeier and Sannikov (2014) predicts that leverage builds up in

tranquil times, when financial conditions are loose. To test whether Spillover Persistence reflects

this relationship between financial conditions and leverage, I regress an institution’s leverage

ratio on its one-year–lagged Spillover Persistence. The results show that a 1 standard deviation

decline in Spillover Persistence is associated with a 0.03 standard deviation increase in the

leverage of financial institutions. This effect is particularly pronounced for institutions that

face tighter financial constraints ex ante, such as banks with a larger share of intangible assets

and higher leverage.

Fragility is typically associated with a larger probability of future crises. To examine the

relation between Spillover Persistence and crises, I use Laeven and Valencia (2020)’s database

of banking crises. Consistent with lower Spillover Persistence reflecting higher fragility, I doc-

ument that a one standard deviation decline in Spillover Persistence increases the likelihood

of a subsequent banking crisis by 3.3 percentage points (ppt). Compared to the average crisis

likelihood of 19.4% in the sample, this effect is sizable. It is robust to alternative definitions of

banking crises. Spillover Persistence also negatively correlates with the severity of crises. These

results strongly support the hypothesis that low Spillover Persistence captures loose financial

conditions that nurture fragility in the financial system.

The empirical findings hold in a variety of alternative empirical specifications. In particular,

they are robust to including a large set of macroeconomic control variables and absorbing time-

invariant differences across firms and aggregate shocks in macroeconomic conditions. Moreover,

the results are unaffected by controlling for traditional systemic risk measures. Thus, Spillover

Persistence captures new information about systemic risk.

The determinants of Spillover Persistence are very similar across different systemic risk

measures used as inputs to compute Spillover Persistence, emphasizing the robust relationship

with financial conditions. However, the ability of Spillover Persistence to capture fragility

disappears once it is based on ∆CoVaR or MES. This finding points to the importance of

disentangling amplification and volatility dynamics to capture build-ups of fragility.
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Recent macro-finance models highlight the link between systemic risk and financial frictions

(e.g., Adrian and Boyarchenko (2012), He and Krishnamurthy (2012), He and Krishnamurthy

(2013), Brunnermeier and Sannikov (2014)). In these models, losses have persistent effects

because balance sheets take time to recover after shocks. Motivated by this prediction, this

paper introduces a novel measure that empirically captures the duration of the effects of loss

spillovers at the firm level and sheds light on its determinants.

The volatility paradox suggests that fragility builds up when financial conditions are loose.

Consistent with this prediction, prior studies document that periods with loose financial con-

ditions precede periods with low GDP growth and financial crises (e.g., Schularick and Taylor

(2012), Jordà et al. (2015), Adrian et al. (2019), Krishnamurthy and Muir (2020), Adrian et al.

(2022)).2 These studies primarily rely on financial market prices and quantities and balance

sheet characteristics to capture fluctuations in funding constraints (e.g., bond spreads) and,

thus, focus on specific shock propagation channels. Complementing these studies, Spillover

Persistence takes a “global” perspective, encompassing various mechanisms without taking a

stand on the causes of systemic risk. Its ability to capture amplification and fragility dynamics

is robust to controlling for numerous firm and macroeconomic characteristics that have been

found to predict crises.

In contrast to macroeconomic indicators, Spillover Persistence is measured at the firm level.

Thus, it captures variation across firms, adding to existing work on measuring firm-level systemic

risk (Billio et al. (2012), Adrian and Brunnermeier (2016), Acharya et al. (2017)).3 Whereas

traditional systemic risk measures capture the contemporaneous effects of loss spillovers (e.g.,

the financial system’s risk on days on which JP Morgan faces large losses), this paper analyzes

the persistent effects of loss spillovers (e.g., the financial system’s risk on days after JP Morgan

faces large losses). I document that these two perspectives on systemic risk differ. Spillover

Persistence captures variation in financial conditions and fragility in the financial system even

after controlling for traditional systemic risk measures, suggesting that it reflects a novel and

informative dimension of systemic risk.

The volatility paradox has been highlighted as a weak spot of traditional systemic risk

measures, impairing their ability to detect fragility before amplification effects arise because

these measures mechanically respond to volatility fluctuations.4 Volatility is not necessarily a

2The related literature on leverage cycles documents that bank leverage negatively correlates with a bank’s
individual risk (Adrian and Shin (2014)). Complementing this literature, I focus on the financial system’s risk
instead of firms’ individual risk.

3Global measures of systemic risk (such as ∆CoVaR and MES) are the most central metrics in the systemic risk
literature (Benoit et al. (2017)). Other measures focus on specific mechanisms that potentially create systemic
risk, such as fire sales (Greenwood et al. (2015), Duarte and Eisenbach (2021)), portfolio similarity (Cai et al.
(2018), Girardi et al. (2021)), and liquidity risk (Bai et al. (2018)).

4For example, ∆CoVaR is proportional to the volatility of the financial system (Adrian and Brunnermeier
(2016, p.1413)) and MES is proportional to a firm’s beta multiplied by its individual risk (Benoit et al. (2017,
p.137)). Brunnermeier and Oehmke (2013, p.66) note that “[...] because systemic risk usually builds up in the
background during the low-volatility environment of the run-up phase, regulations based on risk measures that
rely mostly on contemporaneous volatility are not useful. They may even exacerbate the credit cycle. Hence,
the volatility paradox rules out using contemporaneous risk measures and calls for slow-moving measures that
predict the vulnerability of the system to future adverse shocks.” Billio et al. (2012, p.537) stress that “[...]
measures based on probabilities invariably depend on market volatility, and during periods of prosperity and
growth, volatility is typically lower than in periods of distress. This implies lower estimates of systemic risk until
after a volatility spike occurs, which reduces the usefulness of such a measure as an early warning indicator.”
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reliable empirical indicator of fragility. For example, Danielsson et al. (2018) document that

banking crises are on average preceded by a high level of volatility as well as by large deviations of

volatility from its trend. Whereas below-trend deviations are a particularly significant predictor,

their findings also suggest that volatility fluctuations do not only pick up variation in financial

conditions but also in other crises-related factors. Because optimal policy tightens to fight

a build-up of fragility but loosens to mitigate amplification effects (Adrian and Boyarchenko

(2012), Brunnermeier and Sannikov (2014), Phelan (2016), Farhi and Werning (2021)), it is

important for policymakers to identify and distinguish buildups of fragility from amplification

effects. Tackling this challenge, I propose a modified version of ∆CoVaR, called ∆CoSP, which

removes ∆CoVaR’s mechanical correlation with volatility. Indeed, Spillover Persistence based

on ∆CoSP significantly declines with the buildup of fragility at the onset of stock market booms

and increases with amplification effects arising at their burst. Moreover, the main empirical

results are robust to controlling for volatility, which highlights the importance of understanding

the persistence in risk spillovers.

2 Hypotheses

The macro-finance literature considers financial frictions as a key determinant of financial in-

stability and business cycle fluctuations. Due to financial frictions, shocks to agents’ net worth

make them less willing or able to hold assets, which further depresses prices, amplifying the

initial shock. Amplification effects are already present in seminal models in this literature (e.g.,

Kiyotaki and Moore (1997), Bernanke et al. (1999)). Modern macro-finance models, which

solve for the complete equilibrium dynamics, stress the non-linear nature of amplification ef-

fects, which are small in tranquil times but substantial during crises (e.g., in Brunnermeier

and Sannikov (2014)). Three key predictions emerge from these models. First, weaker balance

sheets are associated with stronger amplification of initial shocks and, thus, higher risk in the fi-

nancial system.5 Second, net worth takes time to recover after large shocks because these impair

agents’ borrowing capacity. In other words, large shocks persistently weaken agents’ balance

sheets and, therefore, persistently affect the system’s risk. Finally, the “volatility paradox” in

Brunnermeier and Sannikov (2014) says that loose financial conditions motivate agents to take

more risk and increase their leverage. This makes the financial system more fragile, increasing

the probability of future crises.

In this paper, I provide empirical evidence for the persistent effects of large losses on risk

in the financial system, reflected in a new measure called Spillover Persistence. Spillover Per-

sistence is the duration over which risk in the financial system remains elevated following a

financial institution’s initial loss. Whereas existing studies do not explicitly consider Spillover

Persistence, it is conceptually related (while not equivalent) to the time it takes agents’ balance

sheets to recover from initial losses in macro-finance models: the longer it takes balance sheets

to recover, the more persistent are the effects of initial losses.

5For example, in He and Krishnamurthy (2013), the higher the financial intermediary’s leverage, the more
do risk premia rise when intermediary capital declines. In Brunnermeier and Sannikov (2014), amplification
of exogenous fundamental shocks is stronger when agents have more leverage, and in Di Tella (2017), “weaker
balance sheets amplify the direct effect of higher idiosyncratic risk” (Di Tella (2017, p.2064)).
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Slow balance sheet recovery in macro-finance models results from agents’ financial con-

straints. Motivated by this mechanism, I hypothesize that financial conditions are an important

determinant of Spillover Persistence: the tighter financial conditions are, the longer it takes to

restore net worth and, thus, the longer is the system’s risk elevated following large shocks.6 To

test this relationship, I use financial-market–based indicators for financial conditions and vari-

ation in financial conditions related to banking crises, asset fire sales, and stock market price

bubbles:

Hypothesis 1 (Determinants of Spillover Persistence). Spillover Persistence is

i. higher when financial market conditions are tighter,

ii. higher during banking crises,

iii. higher following asset fire sales,

iv. and lower during the run-up phase of stock market price bubbles.

Based on Hypothesis 1 (that Spillover Persistence reflects financial conditions) and the

volatility paradox (that loose financial conditions nurture fragility in the financial system), I

hypothesize that lower Spillover Persistence is associated with a more fragile financial system:

Hypothesis 2 (Spillover Persistence and Fragility). Lower Spillover Persistence is associated

with

i. more risk-taking by financial institutions

ii. and a higher probability of future banking crises.

In the following sections, I propose an empirical framework to measure Spillover Persistence

and test Hypotheses 1 and 2.

3 Empirical Framework and Data

3.1 Spillover Persistence

I define Spillover Persistence as the time horizon over which risk in the financial system is

elevated following an institution’s initial losses, building on the literature on systemic risk

measures. For a given time-lag τ ≥ 0, M I
τ denotes a systemic risk measure that reflects the

(tail-)dependence between initial losses −rIt of an institution I and future losses −rSt+τ of the

financial system. Spillover Persistence is the systemic-risk–weighted average time-lag, similarly

to the Macaulay duration:

6The relationship between amplification (driven by financial constraints) and persistence in macro-finance
models is not unambiguous. In Brunnermeier and Sannikov (2016), risk premiums sharply increase during crises
and, therefore, agents recapitalize relatively quickly even after large shocks; however, this is at odds with the
long duration of crises in the data (Gopalakrishna, 2023). In an extension proposed by Gopalakrishna (2023),
(specialized) agents become less productive and exit more often during crises, which prolongs the system’s time
to recover.
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Definition 1. Spillover Persistence based on a systemic risk measure M I
τ is given by

τ̄ =

∫ τmax

τ=1 τ M I
τ dτ∫ τmax

τ=1 M I
τ dτ

, (3)

where τmax is the maximum time-lag.

The prior literature has formulated desirable properties of systemic risk measures (e.g.,

Brunnermeier and Oehmke (2013), Adrian and Brunnermeier (2016)). Two additional proper-

ties are particularly useful in the context of Spillover Persistence. First, to interpret τ̄ as an

average systemic-risk–weighted time horizon, M I
τ must be weakly positive, M I

τ ≥ 0. Whereas

most systemic risk measures can theoretically have both positive and negative values, they are

typically positive, reflecting positive tail dependence of losses (see Table 1).

Second, the volatility paradox predicts that fragility builds up in times with loose financial

conditions, typically characterized by low volatility. However, fluctuations in volatility also mir-

ror macroeconomic characteristics other than financial conditions, such as economic uncertainty

(Baker et al. (2016)) and industry growth (Engle et al. (2013)). This interplay complicates the

disentanglement of amplification dynamics within the financial system, and both unusually large

and small levels of volatility may indicate high fragility (Danielsson et al. (2018)).7 Thus, in

order to not conflate amplification and fragility with volatility dynamics, it is desirable that

τ̄ does not mechanically respond to fluctuations in volatility. For example, this property is

satisfied if M I
τ is not mechanically linked to volatility. However, traditional systemic risk mea-

sures, such as ∆CoVaR and MES, increase with volatility by design (Adrian and Brunnermeier

(2016), Benoit et al. (2017)). Therefore, τ̄ can violate this second property when it is based on

traditional measures. For this reason, in the next section, I propose a modified systemic risk

measure which is not mechanically linked to volatility.

3.2 Excess Conditional Shortfall Probability

In the following, I propose a new systemic risk measure that, on one hand, closely follows the

design of existing measures but, on the other hand, does not mechanically respond to changes

in volatility. I define by V aRI(q) the (1− q)×100% percentile of the unconditional distribution

of institution i’s equity return loss −rIt ,

P(−rIt ≥ V aRI(q)) = q, (4)

where rIt is the change in the log market value of an institution’s equity between t − 1 and

t, t denotes time (in days), and P is a (time-)unconditional probability measure. Typically,

q ∈ (0, 1) is small and V aRI(q) is a large positive number as it reflects the smallest return loss

that is not exceeded with probability (1−q)×100%. Analogously, by replacing the institution’s

return rIt with the system’s return rSt , V aR
S(q) is the system’s risk.8

7In my sample, a higher level of stock market volatility is associated with a significantly higher likelihood of
a crisis in the subsequent year.

8The system’s return is the return of an index of all institutions in the financial system excluding the currently
considered institution I (as described in Appendix B.1).
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The system’s Excess Conditional Shortfall Probability (∆CoSP) compares the conditional

and unconditional probability that the system’s unconditional Value-at-Risk is exceeded:

Definition 2. For τ > 0 and q ∈ (0, 1), ∆CoSPI
τ is the probability of large losses of the system

τ days after large losses of institution I compared to an average day:

∆CoSPI
τ = P

(
−rSt+τ ≥ V aRS(q) | −rIt ≥ V aRI(q)

)
− q. (5)

∆CoSP exhibits several properties that are important in the context of measuring Spillover

Persistence. First, by definition of V aRS(q), if the returns rSt are issued from a stationary

process, it is P(−rSt+τ ≥ V aRS(q)) = q. Therefore, if the institution’s and system’s losses

are independently distributed, then ∆CoSPI
τ = P(−rSt+τ ≥ V aRS(q)) − q = 0. Instead, if

∆CoSPI
τ > 0, then, compared to an average day, the probability of large losses in the system is

∆CoSPI
τ × 100 ppt (percentage points) larger following losses of institution I.

Second, analogously to ∆CoVaR, ∆CoSP is derived from the conditional distribution of the

system as it conditions on large losses of the financial institution. Therefore, ∆CoVaR and

∆CoSP share a similar interpretation: both reflect the tail dependence of return losses. The

main difference is that, instead of being based on the (conditional) quantile function, ∆CoSP

is based on its inverse, namely the cumulative distribution function: using Bayes’ theorem,

∆CoSP can be rewritten as follows:

∆CoSPI
τ =

1

q
P
((
−rSt+τ ≥ V aRS(q)

)
∩
(
−rIt ≥ V aRI(q)

))
− q. (6)

In other words, ∆CoSP fixes the quantile and compares the probability of breaching it, whereas

∆CoVaR fixes the probability and compares the quantile that attains it.9 As a consequence,

∆CoSP does not measure risk in monetary units, in contrast to traditional (systemic) risk

measures, which reduces its responsiveness to fluctuations in volatility.

Third, because the unconditional probability of exceeding the Value-at-Risk is by definition

fixed to q, changes in neither the institution’s nor the system’s unconditional volatility mechan-

ically affect ∆CoSP.10 Therefore, ∆CoSP isolates variation in tail dependence from variation in

volatility, consistent with the second desirable property in Section III.3.1.

9I illustrate the differences and similarities of ∆CoSP and ∆CoVaR in Appendix Figure IA.2. Note that
∆CoVaR conditions on the event {−rIt = V aRI(q)}, whereas ∆CoSP conditions on {−rIt ≥ V aRI(q)}. The
reason for this difference is that Adrian and Brunnermeier (2016) estimate ∆CoVaR using quantile regressions
(which assume a linear relationship with rIt ), whereas a non-parametric estimator for ∆CoSP is readily available
when conditioning on {−rIt ≥ V aRI(q)}.

10Assume that rIt and rSt+τ both belong to a location-scale family, such that rIt = µI + σIεI and rSt+τ =
µS + σSεS with σI , σS > 0. Denote the marginal distributions of εI and εS as FI and FS , respectively, both
with unit variance. εI and εS (and, thus, rIt and rSt+τ ) may or may not be independently distributed. Then,
using the definition of rIt and assuming the existence of the inverse cdf F−1

I , the Value-at-Risk, defined by
P(−(µI + σIεI) ≥ V aRI) = q, is equal to V aRI = −µI − σIF

−1
I (q). Analogously, V aRS(q) = −µS − σSF

−1
S (q).

Using this and the definitions of rIt and rSt+τ , it holds that

∆CoSPI
τ = P

(
−(µS + σSεS) ≥ −µS − σSF

−1
S (q) | −(µI + σIεI) ≥ −µI − σIF

−1
I (q)

)
− q

= P
(
−σSεS ≥ −σSF

−1
S (q) | −σIεI ≥ −σIF

−1
I (q)

)
− q

= P
(
εS < F−1

S (q) | εI < F−1
I (q)

)
− q, (7)

which depends on the joint distribution of (εS , εI). Thus, holding the distribution of (εS , εI) fixed, changes in
the firm’s or system’s volatility, σI or σS , do not affect ∆CoSPI

τ .
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Fourth, ∆CoSPI
τ is related to measures of Granger causality (such as those proposed by

Billio et al. (2012)). The core idea of Granger causality is that the system’s losses at time t+ τ ,

τ > 0, cannot directly cause losses of institution I at time t.11 However, it is worth stressing

that, similar to existing systemic risk measures, ∆CoSP does not causally identify loss spillovers.

Instead, it is a statistical measure for tail correlation. Thus, it may also capture institutions’

exposure to common shocks, which is an important component of financial (in-)stability (Adrian

and Brunnermeier (2016), Brunnermeier et al. (2020)).12

Finally, by definition, ∆CoSP can be negative. Figure 1 provides an example. Whereas

∆CoSPI
τ < 0 for several time-lags τ in Figure 1 (a), clearly these instances result from estimation

errors rather than from systematically negative ∆CoSP. In Appendix B.2, I provide detailed

evidence that ∆CoSP is indeed typically (weakly) positive: an individual institution’s losses are

positively correlated with losses in the financial system.

[Place Figure 1 about here]

3.3 Estimation

A standard, non-parametric estimator for ∆CoSP is given by (see Appendix B.2 for details):

∆ĈoSPτ =
1

q(n− τ)

n−τ∑
t=1

1{
−rIt≥V̂ aR

I
(q),−rSt+τ≥V̂ aR

S
(q)

} − q, (8)

where n is the number of observations and the Value-at-Risk estimator is the negative of the

nq-th (or ([nq] + 1)-th) order statistic of returns if nq is an integer (if it is not).

Intuitively, the correlation between an institution’s initial losses and future losses in the

system may diminish over time and, thus, ∆CoSPI
τ decreases with an increasing time-lag.

Consistent with this conjecture, ∆CoSPI
τ is exponentially decreasing in the example of Figure

1 (a), whereas its shape is similar but its decline less steep in Figure 1 (b).

Motivated by these observations, I estimate Spillover Persistence by, first, fitting ∆CoSPI
τ

to an exponential function of τ , ∆CoSPI
τ = αIeτβ

I
.13 The parameters αI and βI are varying

in the cross-section of institutions and across time (I omit the superscripts in the following). I

disregard observations if the fitted value for α is negative and, thus, the weights to compute

Spillover Persistence are non-negative for remaining observations, consistent with the first de-

sirable property formulated above. In the example of Figure 1, the estimated parametric model

closely matches the non-parametric estimate. More generally, in Appendix B.2, I provide com-

prehensive evidence that the parametric estimation approach mitigates the impact of estimation

errors on Spillover Persistence and does not create a systematic bias.

11If stock markets were not sufficiently liquid, the system’s stock return at time t+τ could reflect old information
that have caused the institution’s losses at time t. In Section 6, I show that CoSP measures are not driven by
stock market illiquidity.

12Several robustness analyses suggest that the baseline results are not primarily driven by exposure to aggregate
shocks (see Section 6).

13Directly using ∆ĈoSPτ to weight time-lags in Equation (3) leads to substantial estimation error as I document
in Appendix B.2.
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For each institution and estimation window, I first calculate the average level of systemic

risk across time-lags, using the fitted parameters α̂ and β̂:

ψ̄ =
1

τmax − 1

∫ τmax

1
α̂eβ̂τdτ =

α̂

β̂(τmax − 1)

[
eβ̂τ

max − eβ̂
]
. (9)

I refer to ψ̄ as AVERAGE ∆CoSP. Then, Spillover Persistence is defined as the systemic-risk–

weighted average time-lag:

SPILLOVER PERSISTENCE =
1

ψ̄(τmax − 1)

∫ τmax

1
τα̂eβ̂τdτ (10)

=
α̂

β̂2ψ̄(τmax − 1)

[
(β̂τmax − 1)eβ̂τ

max − (β̂ − 1)eβ̂
]
. (11)

Importantly, this approach applies to other systemic risk measures, as well. To examine

the role of the underlying systemic risk measure in calculating Spillover Persistence, I compute

two alternative versions of Spillover Persistence based on systemic risk measures other than

∆CoSP. For each measure, I first evaluate the measure for different time-lags between the

institution’s and system’s return losses, second, fit the measure to the same parametric function

as ∆CoSP, αeβτ , and, then, use Equations (9) and (11) to compute Spillover Persistence. The

main comparison is with Adrian and Brunnermeier (2016)’s ∆CoVaR because it is most closely

related to ∆CoSP:

∆CoVaR = CoV aR−rI=V aRI(q) − CoV aR−rI=V aRI(0.5), (12)

where P(−rS ≥ CoV aRE | E) = q for event E, and ∆CoVaR is estimated using quantile

regressions of weekly equity market returns.14 As a robustness check, I also consider Acharya

et al. (2017)’s Marginal Expected Shortfall (MES), which is defined as

MES = E[−rI | −rS ≥ V aRS(q)]. (13)

Following Acharya et al. (2017), I estimate MES for each year as institution I’s average return

during days with the q × 100% largest losses of the system.

3.4 Data

The estimation of systemic risk measures is based on daily equity market returns. I retrieve

from Thomson Reuters Datastream data on all financial institutions in the Datastream universe

that are either currently listed or dead but with an available primary major equity quote (as

of February 2019). The sample starts on January 1, 1985, and ends on December 31, 2017,

including three recessions (1990-1991, 2001, and 2007-2009) and several crises (1987, 1994,

1997, 1998, 2000, 2008, 2011), and it covers a large number of financial institutions across

multiple countries.

For each institution, I obtain data on the unpadded and unadjusted price of common equity

14Macroeconomic state variables used as explanatory variables in quantile regressions are reported in Appendix
Table IA.2. In the main analyses, I use the annual average of weekly ∆CoVaR.
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in local currency, the number of outstanding shares, and market capitalization in USD. I drop

institutions with less than one year of price data and African and South American institutions.15

Following Adrian and Brunnermeier (2016), I focus on the following financial sectors: banks (i.e.,

commercial banks or depository institutions; BAN), broker-dealers (i.e., credit firms, investment

banks, or security and commodity brokers; BRO), insurance companies (INS), and real estate

firms (i.e., real estate property operators, developers, agents, or managers; RE).16

Each institution is assigned (1) to one country and (2) to one of the following regions

based on its headquarter location: Europe, Asia (excluding Japan), North America, Japan, and

Australia. By accounting for institutions’ locations, I acknowledge geographical variation in the

macro-economic environment (such as interest rate levels).

Losses in the financial system are defined as daily return losses of a market-value–weighted

index of financial institutions in the system. Following Brunnermeier et al. (2020), for each

currently considered institution I, I define the relevant system as the set of other financial

institutions in the same geographical region. For instance, the financial system for JP Morgan

contains all North American financial institutions except for JP Morgan.17

I use backward-looking rolling estimation windows with a size of 5 years to estimate ∆CoSP.18

To alleviate estimation errors, I exclude institutions from a given estimation window if there are

less than 700 non-missing and non-zero observations of daily returns.19 The reference level to

compute systemic risk measures is q = 5%, which is similar to other studies.20 The maximum

considered time lag is τmax = 50 days. I winsorize systemic risk measures at the 1th and 99th

percentiles.

Finally, I enrich the sample with firm characteristics obtained from Thomson Reuters World-

scope, namely firm size (log of total assets), leverage (total assets to the market value of equity),

and equity valuation (market-to-book value), and additional bank and broker-dealer character-

istics obtained from Moody’s Analytics BankFocus, namely the volume of deposits, impaired

loans, intangible assets, credit default swap notional (all relative to total assets), and a bank’s

liquidity ratio (liquid assets over deposits and short-term funding). Data on stock market bub-

bles is from Brunnermeier et al. (2020). Moreover, I include a wide range of macroeconomic

characteristics, such as inflation, GDP, investment and credit growth, banking crises, equity

market volatility, interest rates, and fixed income spreads. An overview of variable definitions

and data sources as well as summary statistics for institution and macroeconomic characteristics

15To omit a potential bias from public offerings or share repurchases, I drop days on which the number of
an institution’s outstanding shares changed by more than 0.5% compared to the previous day. To ensure that
securities are sufficiently liquid, I also drop days on which an institution’s market capitalization does not exceed
USD 100,000. Moreover, I exclude all days on which at least 95% of the institutions in the sample do not report
a price.

16I classify an institution as bank if its SIC is between 6000 and 6199 or equal to 6712, as broker-dealer if its
SIC is between 6200 and 6299, as insurer if its SIC is between 6300 and 6399, and as real estate institution if its
SIC is between 6500 and 6599.

17Details are described in Appendix B.1.
18A relatively long estimation window is needed to ensure that economically significant losses occur within the

time window and that systemic risk measures exhibit a reasonably small estimation error.
19I also exclude from each time series of equity returns (a) periods with more than 5 subsequently missing

returns and (b) 1500-day periods with more than 180 missing returns.
20The choice of q is subject to a trade-off between capturing more severe losses (smaller q) and relying on more

observations and, thus, reducing the estimation error (larger q). For example, Adrian and Brunnermeier (2016)
use 1% and 5%, Brunnermeier et al. (2020) use 2%, and Acharya et al. (2017) use 5% as reference levels.
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are in Appendix A.

3.5 Summary Statistics

The baseline sample includes 1,067 financial institutions from 56 countries and ranges from 1989

to 2017.21 Most firms are (commercial) banks, followed by real estate firms, broker-dealers, and

insurers.22 The total market value of firms in the baseline sample is 9.61 trillion USD in

December 2017, which corresponds to 85% of the market value of financial firms worldwide.

The subsample of U.S. firms captures 74% of publicly listed U.S. financial institutions.23 Thus,

the sample is representative for the vast majority of publicly listed financial institutions.

[Place Table 1 about here]

Table 1 provides summary statistics for the main variables (see Appendix Table IA.3 for

the remaining variables). Following a financial institution’s losses, the probability of losses in

the system is elevated by 3 ppt on average, reflected by AVERAGE ∆CoSP, for an average

time horizon of 17.64, reflected by SPILLOVER PERSISTENCE. As Figure 2 (a) illustrates,

AVERAGE ∆CoSP peaks during the 2007-08 financial crisis, the Asian financial crisis in the

late 1990s, and the Japanese banking crisis at the beginning of the 1990s. Figure 2 (b) depicts

the evolution of SPILLOVER PERSISTENCE, which, on average, resembles that of AVER-

AGE ∆CoSP. The correlation between these measures is 64%, pooled across institutions and

time (see Appendix Table IA.4). To disentangle variation in SPILLOVER PERSISTENCE

from that in the level of systemic risk, I control for AVERAGE ∆CoSP in regressions with

SPILLOVER PERSISTENCE as explanatory variable. The correlation of

SPILLOVER PERSISTENCE with contemporaneous systemic risk measures is substantially

lower, namely 9% with ∆CoVaR and 13% with MES. Therefore, most of the variation in

SPILLOVER PERSISTENCE is orthogonal to the variation in contemporaneous systemic risk

measures.

[Place Figure 2 about here]

SPILLOVER PERSISTENCE dynamics are sensitive to the choice of its underlying sys-

temic risk measure. Although the summary statistics for SPILLOVER PERSISTENCE are

similar across different systemic risk measures, the dynamics are different. In fact, the correla-

tion between SPILLOVER PERSISTENCE based on ∆CoSP is only 30% with that based on

∆CoVaR and 38% with that based on MES (see Appendix Table IA.4 and Figure IA.4). One

reason for these differences may be the volatility-dependence of ∆CoVaR and MES. In fact,

21Here and in the following, year refers to the last year in a 5-year estimation window for systemic risk measures.
41.9% of firm-year observations are for institutions located in Europe, 30.5% in North America, 18.3% in Asia,
5.3% in Japan, and 4% in Australia.

22More specifically, 43.3% of firm-year observations are for banks, 23.2% for real estate firms, 20.3% for broker-
dealers, and 13.2% for insurers.

23The total market value of U.S. firms in the sample is 3.75 trillion USD in December 2017. To measure the total
market value of the financial sector, I use the STOXX Global 3000 FINANCIALS index and STOXX USA 900
FINANCIALS index (both retrieved from Thomson Reuters Datastream), which on December 29, 2017, record a
total market value of 11.36 trillion USD and 5.06 trillion USD, respectively. The FTSE WORLD FINANCIALS
and FTSE USA FINANCIALS index are at similar (but slightly lower) levels.
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SPILLOVER PERSISTENCE correlates substantially more with stock market volatility when

it is based on ∆CoVaR (35%) and MES (41%) than when it is based on ∆CoSP (13%) (see

Appendix Figure IA.5).

4 Determinants of Spillover Persistence

4.1 Financial Conditions

Hypothesis 1 states that Spillover Persistence is positively correlated with tighter financial

conditions. To test this hypothesis, in Panel (A) in Table 2, I first use the Chicago Fed’s National

Financial Conditions Index (NFCI), which reflects financial conditions in U.S. financial markets.

A higher level of the NFCI indicates tighter conditions. Consistent with the hypothesis, for

U.S. financial institutions, I find that SPILLOVER PERSISTENCE significantly and positively

correlates with the NFCI. A 1 standard deviation increase in the NFCI is associated with a 0.28

standard deviations increase in SPILLOVER PERSISTENCE. Thus, tight financial market

conditions are an important driver of high SPILLOVER PERSISTENCE.

[Place Table 2 about here]

In column 2, I additionally consider other macroeconomic characteristics that reflect U.S.

financial conditions as explanatory variables, such as a banking crisis indicator (from Laeven and

Valencia (2020)), credit growth, and bond spreads. Crises are particularly strongly correlated

with SPILLOVER PERSISTENCE. During crises, SPILLOVER PERSISTENCE is 2.14 days

larger than in normal times, which corresponds to approximately 30% of its standard deviation.

Other indicators for tighter financial conditions are also significantly correlated with larger

SPILLOVER PERSISTENCE, such as lower credit growth and a higher growth in the short-

term treasury rate, term spread, and credit spread.

These relationships qualitatively also hold in the full, international sample (column 3).

Whereas some coefficients become insignificant (though with the same sign as in the U.S. sam-

ple), the coefficients on crises and interest rate growth remain significantly positive. The coef-

ficient on crises is larger in the international sample and implies that, on average, crises are as-

sociated with 4.5 days larger SPILLOVER PERSISTENCE. Overall, these results are consistent

with the hypothesis that tighter financial conditions are associated with larger SPILLOVER PER-

SISTENCE.

In column 4, I consider SPILLOVER PERSISTENCE based on ∆CoVaR instead of ∆CoSP.

In both cases, banking crises are associated with a significantly larger SPILLOVER PERSIS-

TENCE. However, the signs on the coefficients of other measures for financial conditions flip,

suggesting that looser financial conditions relate to larger SPILLOVER PERSISTENCE. More

specifically, SPILLOVER PERSISTENCE based on ∆CoVaR is positively correlated with larger

credit growth and with smaller interest rate, term spread, and credit spread growth. These

mixed results for ∆CoVaR are consistent with the significant differences in SPILLOVER PERSIS-

TENCE across systemic risk measures and emphasize the importance to measure SPILLOVER

PERSISTENCE using a systemic risk measure that does not mechanically respond to volatility.
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4.2 Fire Sales

To zoom in on the role of amplification effects, I consider asset fire sales. Pecuniary externalities

resulting from fire sales are an important driver of amplification effects in macroeconomic models

as they interact with agents’ financial constraints. To examine this mechanism empirically, I

exploit hurricane Katrina as an exogenous shock to property & casualty (P&C) insurers that

were active in the hurricane-exposed region.

Hurricane Katrina made first landfall on August 25, 2005, and has been one of the costliest

Atlantic hurricanes on record. It predominantly affected the U.S. states Alabama, Louisiana,

and Mississippi and triggered 41.1 billion USD in insurance claims being filed.24 The volume of

claims corresponds to more than twice the total premiums collected in 2004 by P&C insurers

in these states. To fund these large insurance payments, P&C insurers engaged in substantial

fire sales (Manconi et al. (2016), Girardi et al. (2021)).

I estimate the effect of Katrina on SPILLOVER PERSISTENCE of U.S. P&C insurers that

were exposed to the hurricane relative to other insurers. Exposed insurers are defined as those

with the 25% largest share of premiums written in the states affected by the hurricane, while

other U.S. insurers are in the control group (details are reported in Appendix A.2.3).

To isolate the impact of Katrina, I estimate SPILLOVER PERSISTENCE daily based on 18-

months backward-looking rolling windows (and, due to the shorter estimation window, with a 20-

day maximum time lag). In the baseline specification, I regress SPILLOVER PERSISTENCE

of insurer i on day t (τ̄i,t) on the interaction of the exposure-to-Katrina indicator (Exposedi)

and a post dummy that is equal to one for August 25, 2005, and after, and zero otherwise,

controlling for time-invariant heterogeneity at the insurer level (ui):

τ̄i,t = αEXPOSEDi × POSTt + βPOSTt + ui + εi,t. (14)

α estimates the change in SPILLOVER PERSISTENCE between the pre- and post-Katrina

period for hurricane-exposed insurers relative to unexposed insurers. I expect that α > 0,

consistent with the hypothesis that fire sales by exposed insurers contribute to an increase in

SPILLOVER PERSISTENCE. The model is estimated from August 8 to September 16, 2005,

and, thereby, excludes the effect of the potentially confounding hurricane Rita on September 18,

2005. Due to the small number of U.S. insurers, I use unclustered (heteroskedasticity-robust)

standard errors.

Panel (B) in Table 2 reports the estimated coefficients. The difference-in-difference estimate

in column 4 is significantly different from zero (the t-statistic is 4.45) and implies that Hurricane

Katrina raised SPILLOVER PERSISTENCE by roughly 0.3 days for Katrina-exposed insurers

relative to other insurers. The effect is also economically significant, as it corresponds to 13%

of the standard deviation of SPILLOVER PERSISTENCE in the sample.

The result is robust to additionally including time fixed effects (column 5). It also holds when

increasing the estimation window length or including Canadian insurers in the control group or

when SPILLOVER PERSISTENCE is based on ∆CoVaR or MES (see Appendix Table IA.5).

24Total claims are reported at
https://www.iii.org/article/infographic-hurricane-katrina-10-years-later.
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Overall, the results strongly support Hypothesis 1 that tighter financial conditions, resulting

from fire sales, raise Spillover Persistence.

4.3 Asset Price Bubbles

Whereas crises often occur upon the burst of asset price bubbles, bubble booms emerge when

financial conditions are loose (Borio and Lowe (2002), Brunnermeier and Oehmke (2013), Brun-

nermeier et al. (2020)). Building on this characterization of bubbles, in this section, I use stock

market booms as a proxy for loose financial conditions. Hypothesis 1 then implies that stock

market booms are associated with low Spillover Persistence, particularly at the onset of booms.

By cutting each stock market bubble in two halves at its global price peak, I distinguish

between boom and bust phases of a bubble. Bubble characteristics include the current length

of a boom or bust. Additionally, I define the first month of a bubble’s bust phase as its burst

and create a variable that measures the current distance to a bubble’s burst (Appendix A.2.4

provides more details on the bubbles sample). The summary statistics in Table 1 show that

12% of observations (pooled across firms and years) are labeled as stock market booms and 5%

as bust periods.

First, I regress SPILLOVER PERSISTENCE τ̄i,t of firm i in country c in year t on the

vector of boom and bust indicators (IBubble
c,t ), controlling for the current boom and bust length

(LBubble
c,t ), macroeconomic characteristics (Mc,t), and time-invariant cross-sectional heterogeneity

(ui):

τ̄i,t = αIBubble
c,t + βLBubble

c,t + γMc,t + ui + εi,t. (15)

Column 1 in Table 3 reports the estimated coefficients (standard errors are clustered at firm

and country-year levels, accounting for autocorrelation at the firm level). They show that

SPILLOVER PERSISTENCE is significantly smaller during stock market booms than in other

years (the t-statistic is 3.03).25 The economic significance is large: during booms, SPILLOVER

PERSISTENCE is 4.8 days smaller (68% of its standard deviation). In column 2, I additionally

include year fixed effects, which absorb aggregate fluctuations, and detailed control variables

that reflect market and financial institutions’ characteristics. Adding these controls addresses

concerns that institutions may contribute to the creation of bubbles, e.g., by providing excessive

credit.26 Moreover, I control for ∆CoVaR. Despite this battery of additional control variables,

the coefficient on the boom indicator remains significantly negative with a sizable magnitude

(-1.9 days). This result suggests that bubble boom periods are associated with substantially

lower SPILLOVER PERSISTENCE even beyond what can be explained by market and firm

characteristics.

[Place Table 3 about here]

25Booms can but must not necessarily result in financial crises (Jordà et al. (2015)), which is a potential
explanation for why SPILLOVER PERSISTENCE during bust periods is not significantly larger than during
non-bubble times.

26Schularick and Taylor (2012) and Jordà et al. (2015) argue that excessive credit and financial leverage fuel
the systemic nature of asset price bubbles and financial crises.
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In the baseline specifications, I control for the boom and bust length in order to alleviate

the concern that the results are driven by potential correlation between bubbles and early years

in SPILLOVER PERSISTENCE’s estimation window (which is from t − 4 to t). The results

are also robust to regressing SPILLOVER PERSISTENCE on bubble indicators from the first

year of the estimation window (which is t− 4), as I show in column 3.

Second, I explore the dynamics of SPILLOVER PERSISTENCE during boom episodes by

estimating the following specification:

τ̄i,t = α0BURST DISTANCEc,t × IBoom
c,t + α1I

Bubble
c,t + βLBubble

c,t + γMc,t + ui + εi,t, (16)

where BURST DISTANCEc,t is the current distance to a bubble’s burst. This specification

tests for a trend of SPILLOVER PERSISTENCE during the boom phase of bubbles. If α0 < 0,

then SPILLOVER PERSISTENCE increases during booms, i.e., with shorter distance to the

burst.

Column 4 reports the estimated coefficients within the subsample of bubble episodes. The

point estimate for α0 is significantly negative, which implies that SPILLOVER PERSISTENCE

significantly declines with a larger distance to a bubble’s burst, i.e., increases over time dur-

ing booms. The effect remains highly significant in the baseline specification (column 5)

as well as when including additional control variables for market and financial institutions’

characteristics and ∆CoVaR (column 6). Additionally, in column 6, I control for the num-

ber of boom and bust years in the CoSP estimation window. This alleviates concerns that

SPILLOVER PERSISTENCE dynamics are due to variation in the number of boom or bust

years that enter the estimation window. The findings show that SPILLOVER PERSISTENCE

is particularly low during the onset of stock market booms, consistent with the particularly

loose financial conditions during such episodes.

In Appendix Table IA.6, I estimate the regressions from Table 3 with SPILLOVER PERSIS-

TENCE based on ∆CoVaR (instead of ∆CoSP) as dependent variable. The results are consis-

tent with the baseline results.

5 Spillover Persistence and Fragility

In this section, I empirically test Hypothesis 2 that lower Spillover Persistence is associated

with a more fragile financial system.

5.1 Leverage and Risk-Taking

In canonical macro-finance models (e.g., Brunnermeier and Sannikov (2014)), fragility is driven

by high leverage, which builds up in times of loose financial conditions. Using leverage as a

measure for fragility, I regress a financial institution i’s one-year–ahead leverage (total assets

over the market value of equity) on its SPILLOVER PERSISTENCE τ̄i,t in year t:

LEVERAGEi,t+1 = ατ̄i,t + βψ̄i,t + γFi,t−1 + ηMc,t + ui + εi,t+1, (17)
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controlling for AVERAGE ∆CoSP (ψ̄i,t), time-invariant differences across firms (ui), lagged firm

characteristics (Fi,t−1) and macroeconomic characteristics (Mc,t) in firm i’s country c. In the

most granular specifications, I also include year fixed effects, which absorb aggregate fluctuations

in the economic environment. Standard errors are clustered at the firm and country-year levels,

which accounts for autocorrelation at the firm level and for correlation of residuals across firms

within country-years.

In column 1 in Table 4, I find that LEVERAGE significantly increases when SPILLOVER

PERSISTENCE declines (the t-statistic is 2.39). A one-standard deviation decline in SPILL-

OVER PERSISTENCE relates to an increase in LEVERAGE by 3% of its standard deviation.

The result also holds within the subsample of banks and brokers with a similar magnitude

(column 2).

[Place Table 4 about here]

If, as hypothesized, LEVERAGE increases because lower SPILLOVER PERSISTENCE re-

flects looser financial conditions, it seems reasonable that financial institutions with a weaker

balance sheet are more responsive: these would benefit relatively more from looser financial

conditions. Consistent with this hypothesis, in column 3, I find that the (negative) correlation

between SPILLOVER PERSISTENCE and LEVERAGE is significantly stronger when banks

have more intangible assets or higher leverage ex ante.

In columns 4 and 5, I replace LEVERAGE with credit default swap (CDS) exposure (CDS

notional relative to total assets) as the dependent variable. Derivatives may be used to take

risks, particularly highly leveraged positions, and, thus, derivatives exposure may also negatively

correlate with SPILLOVER PERSISTENCE. Indeed, in column 4, I find that the correlation is

negative for the average bank, however, not significantly different zero (but with a relatively large

t-statistic of -1.3). Nonetheless, column 5 shows that the correlation is significantly negative

(t-statistic: -2.1) for banks with average characteristics. The coefficients on the interactions

with bank characteristics have the same signs as with leverage as dependent variable. A higher

share of impaired loans is significantly associated with a stronger (negative) correlation between

SPILLOVER PERSISTENCE and CDS exposure, consistent with weaker balance sheets fueling

the impact of loose financial conditions. Nonetheless, the results on CDS exposure are slightly

more mixed than those with LEVERAGE as dependent variable. One likely reason is that CDS

contracts can also be used to hedge rather than take (credit) risks. Nonetheless, the firm-level

results overall provide strong support for Hypothesis 2.

5.2 Predicting Crises

Higher fragility increases the likelihood and severity of future crises (e.g., Brunnermeier and San-

nikov (2014)). Therefore, Hypothesis 2 can be tested with the following linear probability model,

which regresses an indicator for one-year–ahead banking crises on the SPILLOVER PERSIS-

TENCE of firm i in country c in year t:

CRISISc,t+1 = ατ̄i,t + βψ̄i,t + γFi,t−1 + ηMc,t + ui + vt + εi,t+1, (18)
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controlling for AVERAGE ∆CoSP (ψ̄i,t), time-invariant differences across firms (ui), aggregate

shocks (vt), lagged firm characteristics (Fi,t−1) and macroeconomic characteristics (Mc,t) in firm

i’s country c. If lower SPILLOVER PERSISTENCE is associated with a more fragile financial

system, then α < 0.

In column 6 in Table 4, I report the estimated coefficients when only controlling for ψ̄i,t and

including firm fixed effects. The estimate for α is negative, implying that lower SPILLOVER

PERSISTENCE is associated with a larger probability of one-year–ahead banking crises. It is

close to being significantly different from zero at the 10% level (with a t statistic of -1.65). The

magnitude implies that banking crises are by about 0.1 standard deviations (4 ppt) more likely

following a one standard deviation reduction in SPILLOVER PERSISTENCE, which highlights

the economic significance of SPILLOVER PERSISTENCE for fragility.

The relation between SPILLOVER PERSISTENCE and future crises is robust to includ-

ing the full set of controls (column 7). In this case, the coefficient is highly significant at

the 1% level. Importantly, by including time fixed effects, the result implies that decreases in

SPILLOVER PERSISTENCE in one country are associated with a higher crisis probability in

this country relative to other countries, holding aggregate factors fixed. Lower SPILLOVER

PERSISTENCE also associates with a higher crisis probability two years ahead (column 8).

This suggests that the relation between SPILLOVER PERSISTENCE and future crises is

not driven by spurious correlation but, instead, reflects structural changes in the financial

system. Overall, the results provide strong evidence for Hypothesis 2, namely that lower

SPILLOVER PERSISTENCE is associated with a more fragile financial system.

Additionally, in Appendix Table IA.7, I present evidence that lower SPILLOVER PERSIS-

TENCE is also associated with a higher likelihood of crises occurring three years in the fu-

ture, of crises that become systemic, and with a larger crisis-induced output loss. Inter-

estingly, although a larger ∆CoVaR is associated with a higher likelihood of future crises

when only including firm fixed effects, this relationship becomes negative when controlling

for SPILLOVER PERSISTENCE. In contrast, the coefficient on SPILLOVER PERSISTENCE

in Equation (18) remains largely unchanged after controlling for ∆CoVaR. This suggests

that SPILLOVER PERSISTENCE captures a dimension of fragility that is not captured by

∆CoVaR.

Finally, I find that a lower SPILLOVER PERSISTENCE based on ∆CoVaR or MES (in-

stead of ∆CoSP) does not significantly correlate with a larger probability of future crises. This

finding points to the importance of using a systemic risk measure that does not mechanically

respond to volatility in order to capture fragility in the financial system: as the volatility para-

dox predicts that fragility builds up during times of low volatility, volatility-driven measures

may not be able to distinguish between high and low fragility during such tranquil episodes.

6 Robustness Analysis

It is beyond the scope of this paper to provide a causal identification of loss spillovers. Instead,

aggregate shocks can potentially result in losses for both an individual institution I on day t

and the system on day t+ τ , especially when the stock market is relatively illiquid. Adrian and
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Brunnermeier (2016) and Brunnermeier et al. (2020) argue that it is an advantage of systemic

risk measures to pick up exposure to aggregate shocks because these may be an important

source of systemic risk. Nonetheless, I provide empirical evidence that Spillover Persistence is

not trivially explained by stock market illiquidity and that the results are not primarily driven

by aggregate shocks.

First, aggregate shocks that uniformly affect institutions are absorbed by including time

fixed effects in the regressions. Second, illiquidity of the securities whose prices are used to

estimate systemic risk might bias Spillover Persistence, e.g., when information is priced with

delay. To address this concern, I examine the correlation between stock market illiquidity and

Spillover Persistence and Average ∆CoSP, using a firm’s turnover by volume as a measure for

stock market liquidity as well as Amihud (2002)’s measure for stock market illiquidity. The

results show that neither Spillover Persistence nor Average ∆CoSP are larger when stocks are

less liquid (see Appendix D.2).

Third, and more generally, it is possible that omitted variables lead to persistent losses,

e.g., losses in the financial system on days t and t+ τ . The presence of such omitted variables

can lead to autocorrelation in the system’s equity return and, therefore, may raise the level of

SPILLOVER PERSISTENCE. Alleviating this concern, I document that SPILLOVER PERSIS-

TENCE does not significantly increase with a stronger auto-serial correlation of the system’s

equity return (see Appendix D.2).

Finally, omitted variables might differently affect individual institutions and the system. I

address this concern by estimating ∆CoSP based on the system’s return innovations, defined

as innovations in an autoregressive model of the system’s equity return. Thereby, I strip out

predictable variation from the system’s return, e.g., caused by omitted variables.27 Based on

the resulting time series of AR(1)-innovations, I re-estimate ∆CoSP and Spillover Persistence. I

find that all main results are robust to using this alternative construction of Spillover Persistence

(see Appendix Tables IA.8 to IA.10).

7 Conclusion

Spillover Persistence is a novel characteristic of systemic risk, which reflects the dynamics of

losses in the financial system. It captures the time over which losses “cascade” through the

financial system: the longer-lasting the effect of a firm’s losses on the financial system, the

larger is Spillover Persistence. Motivated by the predictions of modern macro-finance models,

this paper documents that Spillover Persistence captures the dynamics of amplification effects

and fragility in the financial system.

Building on a large multi-country sample from 1989 to 2017, I document that Spillover

Persistence positively correlates with tighter financial conditions. For example, it is significantly

larger during banking crises but significantly lower during the onset of stock market booms.

Consistent with the volatility paradox, the financial system is more fragile during times of low

Spillover Persistence, i.e., financial institutions take more risks and future crises are more likely.

These results suggest that Spillover Persistence captures key dynamics of the financial cycle.

27This approach is called “prewhitening” and common in the forecasting literature (Giglio et al. (2016), Dean
and Dunsmuir (2016)).
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Because Spillover Persistence negatively correlates with fragility but positively with ampli-

fication effects, it can be used to distinguish between fragility and amplification regimes. This

distinction is important for policymakers to implement countercyclical regulation and extends

existing systemic risk measures.

This paper bridges recent advances in macro-finance theory and in the empirical literature

on risks in the financial system. Thereby, it reveals a novel and relevant dimension of systemic

risk and presents new stylized facts. These can potentially serve as guideposts for future –

empirical and theoretical – research of systemic risk, and may prove useful for regulators to

construct early-warning signals for fragility and to guide and implement policy.
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Figures and Tables

Figure 1. Illustration of ∆CoSP Dynamics.
The figures depict the non-parametric and parametric estimates for ∆CoSP for JP Morgan for (a) 2018 and (b)

2009.

(a) 2018. (b) 2009.

Figure 2. Time Series of Average ∆CoSP and Spillover Persistence.
The figures depict the annual cross-sectional mean and 25th and 75th percentiles of AVERAGE ∆CoSP and

SPILLOVER PERSISTENCE (based on ∆CoSP). Both measures are estimated based on daily equity return

losses in 5-year backward-looking rolling windows. The year displayed on the x-axis corresponds to the last year

of the respective estimation window.
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Table 1. Summary Statistics.
This table depicts summary statistics for key variables in the empirical analysis. In the baseline sample, obser-
vations are at the firm-year level, AVERAGE ∆CoSP and SPILLOVER PERSISTENCE are estimated based
on daily equity return losses in 5-years backward-looking rolling windows with end-years 1989 to 2018, ∆CoVaR
is the annual average of the weekly ∆CoVaR, which is estimated based on weekly equity return losses using
quantile regressions, and MES is based on daily equity return losses for a given year. In the fire sales sample,
observations are at the firm-day level, SPILLOVER PERSISTENCE is estimated in 18-months backward-looking
rolling windows with end-dates August 18 to September 5, 2005, for all U.S. insurers. The bubbles sample only
includes countries with available data on bubbles. LEVERAGE in the fragility sample is from Worldscope and
in the Ban & Bro sample is from BankFocus. The Ban & Bro sample is constrained to firms from BankFocus.
Variable descriptions and data sources are provided in Table IA.1. Summary statistics for remaining variables
are provided in Appendix Table IA.3.

N Mean Median SD p5 p95
Baseline sample
SPILLOVER PERSISTENCE (∆CoSP, in days) 11,860 17.64 20.23 7.01 1.93 25.11
AVERAGE ∆CoSP (in ppt) 11,860 0.03 0.03 0.03 0.00 0.09
SPILLOVER PERSISTENCE (∆CoVaR, in days) 10,377 15.43 17.98 7.97 1.61 25.10
SPILLOVER PERSISTENCE (MES, τ̄ , in days) 9,796 14.43 17.44 8.89 1.23 25.40
∆CoVaR (in ppt) 10,015 3.02 2.96 1.63 0.50 5.91
MES (in ppt) 11,836 2.19 1.79 1.80 0.10 5.86
CRISIS (binary) 10,234 0.14 0.00 0.35 0.00 1.00
NFCI (U.S. only) 2,832 -0.37 -0.46 0.46 -0.77 0.80
Fire sales sample
SPILLOVER PERSISTENCE (∆CoSP, in days) 286 4.89 4.79 2.26 1.16 8.62
(Hurricane-Katrina) EXPOSED 286 0.18 0.00 0.39 0.00 1.00
Bubbles sample
BOOM 6,975 0.12 0.00 0.33 0.00 1.00
BUST 6,975 0.05 0.00 0.22 0.00 1.00
BOOM× BURST DISTANCE 6,975 0.29 0.00 0.92 0.00 2.33
Fragility sample
LEVERAGEt+1 8,476 11.59 6.08 16.10 0.83 40.47
100× CRISISt+1 6,833 19.38 0.00 39.53 0.00 100.00
Ban & Bro sample
LEVERAGEt+1 1,686 14.37 9.39 14.34 2.96 42.58
CDSt+1 694 0.19 0.00 0.58 0.00 1.27
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Table 2. Spillover Persistence and Financial Conditions.
Each column presents estimated coefficients from a specification of the form:

τ̄i,t = Γ′Ci,t + εi,t,

where τ̄i,t is the SPILLOVER PERSISTENCE of firm i in year t and Ci,t is a vector of explanatory variables and
fixed effects. Panel A: Columns 1 to 4 report OLS regressions of SPILLOVER PERSISTENCE at the firm-year
level based on either ∆CoSP (coumns 1-3) or ∆CoVaR (column 4) on indicators for financial conditions. NFCI
is the Chicago Fed’s National Financial Conditions Index. The sample runs from 1989 to 2017, and in columns
1 and 2 only includes U.S. firms. Panel B: Columns 5 and 6 report difference-in-difference estimates for the
effect of hurricane Katrina on the SPILLOVER PERSISTENCE (based on ∆CoSP) of exposed U.S. property &
casualty insurers relative to other U.S. insurers. The sample is at the firm-day level and runs from August 18 to
September 5, 2005. POST-KATRINA equals 1 from August 25, 2005 onwards, and zero otherwise. EXPOSED
equals 1 if an insurer’s share of total P&C premiums in Alabama, Louisiana, and Mississippi from 2004Q3 to
2005Q2 relative to all insurance premiums is in the upper quartile across all U.S. insurers.
Variable definitions are provided in Table IA.1. t-statistics are shown in brackets and based on standard errors
clustered at the firm level in columns 1 and 2 and at the firm and country-by-year levels in columns 3 to 4.
Standard errors in columns 5 and 6 are heteroskedasticity-robust. Standardized coefficients are the change in
SPILLOVER PERSISTENCE (in standard deviations) for a one standard deviation change in the explanatory
variable. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

1 2 3 4 5 6
(A) Macro-financial conditions (B) Fire sales

Dependent variable: SPILLOVER PERSISTENCE

Underlying measure: ∆CoSP ∆CoVaR ∆CoSP

Sample: U.S. Full U.S. insurers

NFCI 4.53*** 3.71***
[19.71] [12.97]

CRISIS 2.14*** 4.49*** 3.72***
[7.66] [6.01] [5.89]

CREDIT GROWTH -0.76*** -0.02 0.14***
[-11.86] [-0.29] [2.85]

3M YIELD CHANGE 1.09*** 0.50* -0.18
[10.74] [1.67] [-0.80]

TERM SPREAD CHANGE 0.65*** 0.27 -0.26
[7.11] [1.07] [-1.23]

CREDIT SPREAD CHANGE 0.72*** 0.24 -0.20
[10.48] [1.19] [-1.24]

POST-KATRINA× EXPOSED 0.30*** 0.30***
[4.45] [4.11]

POST-KATRINA -0.30***
[-4.45]

Firm FE Y Y Y Y Y Y
Time FE Y

No. of firms 209 209 938 654 22 22
No. of obs. 2,832 2,832 10,234 5,063 286 286
Adj. R2 0.140 0.238 0.177 0.162 0.971 0.971
Adj. R2 within 0.084 0.188 0.052 0.037 0.107 0.020

Standardized coefficients
NFCI .279 .229
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Table 3. Spillover Persistence and Stock Market Bubbles.
Each column reports OLS regressions of Spillover Persistence on stock market bubble indicators from a specifi-
cation of the form:

τ̄i,t = α′Xi,t + Γ′Ci,t + εi,t,

where τ̄i,t is SPILLOVER PERSISTENCE based on ∆CoSP, Xi,t is a vector of bubble indicators, and Ci,t is a
vector of control variables and fixed effects for firm i at year t. Bubble indicators are equal to one if there is a
bubble, boom, or bust for at least 6 months in the country-year associated with a given firm-year, respectively.
The sample is at the firm-year level and runs from 1989 to 2015. SPILLOVER PERSISTENCE is estimated in
5-year backward-looking rolling windows, where the last year in columns 1, 2 and 4 to 6 is t and in column 3
it is t + 4. The sample in columns 4 to 6 exclude bubbles without bursts and only includes bubble episodes in
column 4. Macro controls are inflation, log(interest rate), GDP growth, investment growth, and credit growth.
Market controls are the short-term yield, credit spread, and term spread changes, TED spread, and stock market
return and volatility. Firm characteristics are size, leverage, and market-to-book ratio, all lagged by one year.
Boom & bust years are the number of boom and bust years in the 5-year estimation window of ∆CoSP. Variable
definitions are provided in Table IA.1. t-statistics are shown in brackets and based on standard errors clustered
at the firm and country-by-year levels. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

1 2 3 4 5 6

Dependent
variable:

SPILLOVER PERSISTENCE
SPILLOVER

PERSISTENCEt+4
SPILLOVER PERSISTENCE

Sample: Baseline Within bubbles Baseline

BOOM -4.84*** -1.90*** -3.44** 2.61 3.62** 0.23
[-3.03] [-2.78] [-2.59] [1.62] [2.02] [0.23]

BUST -2.22 -0.21 -1.34 -0.26 1.10
[-1.26] [-0.25] [-1.43] [-0.20] [1.33]

BOOM ×
BURST DISTANCE

-1.95*** -2.96*** -0.78**

[-4.63] [-5.37] [-1.99]
∆CoVaR 0.08 0.20

[0.45] [0.98]

Macro controls Y Y Y Y Y Y
Market controls Y Y Y
Firm character-
istics

Y Y Y

Boom & bust
length

Y Y Y Y Y

Boom & bust
years

Y

Firm FE Y Y Y Y Y Y
Time FE Y Y

No. of firms 665 665 456 232 575 575
No. of obs. 6,975 6,975 4,835 1,026 5,773 5,773
Adj. R2 0.235 0.464 0.105 0.454 0.329 0.494
Adj. R2 within 0.114 0.050 0.039 0.332 0.211 0.074

p-value for H0: Same coefficient
on boom and bust

0.10 0.09 0.12
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Table 4. Spillover Persistence and Fragility in the Financial System.
Each column presents estimated coefficients from a specification of the form:

yi,t = ατ̄i,t + Γ′Ci,t + εi,t,

where yi,t is an outcome variable, τ̄i,t is SPILLOVER PERSISTENCE, and Ci,t is a vector of control vari-
ables and fixed effects for firm i at year t. Columns 1 to 5 report OLS regressions of firm characteristics on
SPILLOVER PERSISTENCE (based on ∆CoSP) at the firm-year level. The dependent variable in columns
1 to 3 is one-year–ahead LEVERAGE and in columns 4 and 5 one-year–ahead CDS notional scaled by total
assets. The sample in column 1 runs from 1989 to 2017, in columns 2 and 3 from 1991 to 2017, and in columns
4 and 5 from 2005 to 2017. Columns 2 to 5 only include firms from BankFocus. All firm characteristics are
standardized. Columns 6 to 8 report OLS regressions of one-year- and two-year–ahead banking crisis indicators
on SPILLOVER PERSISTENCE at the firm-year level based on a sample that runs from 1989 to 2016.
Macro controls are inflation, log(interest rate), GDP growth, investment growth, and credit growth. Market
controls are the short-term yield, credit spread, and term spread changes, TED spread, and stock market return
and volatility. Firm characteristics are SIZE, LEVERAGE, and MARKET-TO-BOOK ratio, all lagged by one
year. Bank characteristics are LIQUIDITY RATIO, and DEMAND DEPOSITS, IMPAIRED LOANS, and IN-
TANGIBLE ASSETS as a share of total assets, all lagged by one year. Variable definitions are provided in Table
IA.1. t-statistics are shown in brackets and based on standard errors clustered at the firm and country-by-year
levels. Standardized coefficients are the change in the dependent variable (in standard deviations) for a standard
deviation change in Spillover Persistence. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

1 2 3 4 5 6 7 8

Dependent variable: LEVERAGEt+1 CDSt+1
100×

CRISISt+1

100×
CRISISt+2

Sample: Baseline Ban & Bro Baseline

SPILLOVER PERSISTENCE -0.07** -0.09* -0.06 -0.01 -0.01** -0.58 -0.47*** -0.36***
[-2.39] [-1.72] [-1.10] [-1.30] [-2.10] [-1.65] [-3.51] [-2.81]

SPILLOVER PERSIST.× SIZE 0.02 0.01**
[0.62] [2.49]

SPILLOVER PERSIST. ×
LEVERAGE

-0.17** -0.01

[-2.51] [-1.22]
SPILLOVER PERSIST. ×
MARKET-TO-BOOK

-0.09*** -0.02***

[-2.73] [-2.81]
SPILLOVER PERSIST. ×
LIQUIDITY RATIO

0.05* 0.02*

[1.79] [1.98]
SPILLOVER PERSIST. ×
DEMAND DEPOSITS

-0.05 -0.00

[-1.57] [-1.48]
SPILLOVER PERSIST. ×
IMPAIRED LOANS

-0.03 -0.03***

[-1.00] [-2.73]
SPILLOVER PERSIST. ×
INTANGIBLE ASSETS

-0.07*** -0.01**

[-2.67] [-2.07]

Macro controls Y Y Y Y Y Y Y
Market controls Y Y Y Y Y
Firm characteristics Y Y Y Y Y Y Y
Bank characteristics Y Y Y Y Y Y
AVERAGE ∆CoSP Y Y Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y
Time FE Y Y Y Y Y Y

No. of firms 793 195 195 77 77 633 633 620
No. of obs. 8,476 1,686 1,686 689 689 6,833 6,833 6,476
Adj. R2 0.724 0.851 0.853 0.809 0.827 0.161 0.744 0.748
Adj. R2 within 0.188 0.177 0.190 0.071 0.159 0.135 0.310 0.272

Standardized coefficient: -0.03 -0.04 -0.03 -0.04 -0.10 -0.10 -0.08 -0.06
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A Data and Summary Statistics

A.1 Variable Definitions

Table IA.1: Variable Definitions and Data Sources.
Equity market data is at daily frequency, all other variables are at annual frequency. All systemic risk measures and

firm and bank characteristics are winsorized at 1%/99%.

Variable Definition

Equity Market Data

STOCK PRICE Daily unadjusted and unpadded price of common equity. Source: Thomson

Reuters Datastream

OUTSTANDING SHARES Daily number of outstanding shares of common equity. Source:

Thomson Reuters Datastream

MARKET VALUE Daily market value of equity in USD. Source: Thomson Reuters Datastream

(Systemic) Risk Measures

∆CoSP(τ) Likelihood of losses of the system τ days after losses of the institution in excess

of the reference level q = 0.05

AVERAGE ∆CoSP (ψ̄) Average level of ∆CoSP across time-lags

SPILLOVER PERSISTENCE (τ̄) Systemic-risk–weighted average time-lag

∆CoVaR Change in the system’s Value-at-Risk conditional on a firm being under distress

compared to its median state

MES Firm’s average equity return loss conditional on large system losses on the same

day

Macroeconomic Characteristics

NFCI Federal Reserve Bank of Chicago’s National Financial Conditions Index; annual

average. Source: FRED

INFLATION ∆log(Consumer Price Index); annual rate, country-level. Source: BIS

GDP GROWTH ∆log(real GDP); annual rate, country-level. Source: OECD

INVESTMENT GROWTH ∆log(investment/GDP); annual rate, country-level. Source: OECD

CREDIT GROWTH ∆log(credit/GDP); annual rate, country-level. Source: BIS

CRISIS Indicator for the occurrence of banking crises. Source: Laeven and Valencia

(2020)

OUTPUT LOSS 3-year cumulative deviation from GDP trend associated with banking crises.

Source: Laeven and Valencia (2020)

log(INTEREST RATE) log(10-year government bond rate); annual average of weekly rate, continent-

level. Source: see Table IA.2

3M YIELD CHANGE Weekly change in 3-month government bond rates; annual average. Source:

see Table IA.2

TERM SPREAD CHANGE Weekly change in yield spread between 10-year and 3-month government bond

rates; annual average. Source: see Table IA.2

TED SPREAD Spread between 3-month Libor (interbank) and 3-month government bond

rates; annual average. Source: see Table IA.2

CREDIT SPREAD CHANGE Weekly change in the spread between Moody’s Baa rated bonds and 10-year

government bond rates; annual average. Source: see Table IA.2

MARKET RETURN Weekly market return of system-specific MSCI indices; annual average. Source:

see Table IA.2

EQUITY VOLATILITY 22-day rolling window market return of system-specific MSCI indices; annual

average. Source: see Table IA.2

Continued on next page
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Table IA.1 – Continued from previous page

Variable Definition

BOOM Indicator for whether a country experiences a stock market boom. Source:

Brunnermeier et al. (2020)

BUST Indicator for whether a country experiences a stock market bust. Source: Brun-

nermeier et al. (2020)

BOOM LENGTH Current length of a country’s stock market boom. Source: Brunnermeier et al.

(2020)

BUST LENGTH Current length of a country’s stock market bust. Source: Brunnermeier et al.

(2020)

BURST DISTANCE Current distance to a country’s stock market bubble’s burst. Source: Own

calculation based on data from Brunnermeier et al. (2020)

Firm Characteristics (Source: Worldscope.)

SIZE log(total assets)

LEVERAGE Total assets / market value of common equity

MARKET TO BOOK Market value of equity / book value of equity

Bank Characteristics (Ban & Bro Sample) (Source: BankFocus if not stated otherwise)

SIZE log(total assets)

LEVERAGE Total assets / market value of equity

Source: BankFocus (total assets) and Worldscope (market value)

DEMAND DEPOSITS Customer deposits that can be withdrawn immediately without notice or

penalty / total assets

INTANGIBLE ASSETS (Goodwill + other intangible assets) / total assets

IMPAIRED LOANS Impaired & non-performing exposure on customer and inter-bank loans before

loan loss reserves / total assets

LIQUIDITY RATIO Liquid assets (cash and balances with central banks, net loans & advances to

banks, reverse repos, securities borrowed & cash collateral, and financial assets:

trading and at fair value through P&L less any mandatory reserve deposits with

central banks) / deposits and short-term funding

CDS Total credit default swap notional / total assets

Fire Sale Sample

EXPOSED Indicator whether insurer’s total P&C premiums written in Alabama,

Louisiana, and Mississippi (at insurance group level) from 2004Q3 to 2005Q2

are in the upper quartile of the distribution across US insurers. Source: own

calculation based on insurers’ quarterly Schedule T filings to the NAIC re-

trieved from S&P Global Market Intelligence

POST KATRINA Indicator for August 25, 2005, and onwards
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Table IA.2. Region-level macroeconomic state variables and data sources.
The table depicts the region-level macroeconomic variables, which also serve as state variables to estimate

∆CoVaR with quantile regressions, and compares them to the state variables used by Adrian and Brunnermeier

(2016) for the U.S. The choice of state variables is motivated by that in Brunnermeier et al. (2020).

Used by Data used instead

AB2016 North America Europe Japan Australia Asia (ex Japan) Africa

10Y treasury rate
US 10Y

treasury rate
(FRED)

German 10Y
govt. bond rate
(Datastream)

Japanese 10Y
govt. bond rate
(Datastream)

Australian 10Y
govt. bond rate
(Datastream)

Indian 10Y
govt. bond rate
(Datastream)

South African 10Y
govt. bond rate
(Datastream)

3M T-Bill rate
US 3M

T-Bill rate
(FRED)

German 3M
govt. bond rate
(Datastream)

Japanese 3M
govt. bond rate
(Datastream)

Australian 3M
govt. bond rate
(Datastream)

Indian 3M
govt. bond rate
(Datastream)

South African 3M
govt. bond rate
(Datastream)

3M Libor rate
3M Libor rate

(FRED)
3M Fibor rate
(Datastream)

3M Japanese
Libor rate
(FRED)

Australian 3M
interbank rate
(Datastream)

Indian 91-day
T-bill rate

(Datastream)

South African 3M
interbank rate
(Datastream)

Moody’s Baa
rated bonds

Moody’s Baa
rated bonds
(FRED)

Moody’s Baa
rated bonds
(FRED)

Moody’s Baa
rated bonds
(FRED)

Moody’s Baa
rated bonds
(FRED)

Moody’s Baa
rated bonds
(FRED)

Moody’s Baa
rated bonds
(FRED)

S&P500
MSCI North
America

(Datastream)

MSCI Europe
(Datastream)

MSCI Japan
(Datastream)

MSCI Australia
(Datastream)

MSCI Asia (excl Japan)
(Datastream)

MSCI Africa
(Datastream)

CRSP equity
market index

MSCI North
America

(Datastream)

MSCI Europe
(Datastream)

MSCI Japan
(Datastream)

MSCI Australia
(Datastream)

MSCI Asia (excl Japan)
(Datastream)

MSCI Africa
(Datastream)
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A.2 Variable Construction

A.2.1 Macroeconomic Characteristics. In many analyses, I control for macroeconomic

variables that capture key differences in economic environments, namely inflation, GDP growth,

credit growth, investment growth, and an indicator for banking crises (all at country-level), and

the logarithm of the annual average of the 10-year government bond rate (at region level).1

Additionally, I use granular variables on funding conditions and financial markets (motivated

by their use by Adrian and Brunnermeier, 2016), namely annual averages of the weekly changes

in 3-month government bond rate, weekly changes in the slope of the yield curve (10-year and

3-month government bond rate spread), the TED spread (3-month interbank and government

bond rate spread), weekly changes in credit spreads (between Moody’s Baa-rated bonds and

the 10-year government bond rate), and the weekly equity market return and volatility. I

use different government bond rates, interbank market rates, and equity market indices for

different geographical regions (Europe, North America, Asia, Japan, and Australia). I retrieve

all available data on a daily basis, interpolate missing data by using cubic spline interpolation,

and winsorize each variable at 1% and 99%. The data sources are St. Louis FRED database and

Thomson Reuters Datastream. A detailed description of variable definitions and data sources

is given in Tables IA.1 and IA.2.

A.2.2 Firm Characteristics. I consider several firm-level variables that have been shown

to be relevant for systemic risk, namely firm size (the logarithm of total assets), the ratio of

market to book value, and leverage (the ratio of total assets to the market value of equity).

Annual data for these variables are from Thomson Reuters Worldscope.

Additionally, I zoom in on granular characteristics of banks and broker-dealers. For this

purpose, I retrieve detailed bank-level data from 1990 to 2016 for all banks featured in both

Moody’s Analytics BankFocus and the sample of systemic risk measures. I consider bank-level

variables that provide granular information on banks’ liquidity profile, namely the relative size

of intangible assets, demand deposits, time deposits, loans, and impaired (and non-performing)

loans (all scaled by total assets), and banks’ liquidity ratio defined by liquid assets over deposits

and short-term funding.2 For additional analyses on bank risk-taking, I also retrieve data on

banks’ CDS exposure, which is the CDS notional as a share of total assets. To ensure consistency

in accounting, I use total assets from BankFocus as a scaling factor for all bank-related variables

and also re-calculate size and leverage for banks using BankFocus in all regressions for the sample

of BankFocus firms.

A.2.3 Exposure to Hurricane Katrina. For each US insurer, I calculate the share of total

P&C insurance premiums written (at the group level) in Alabama, Louisiana, and Mississippi

relative to total premiums written in the year prior to Katrina (i.e., in quarters 2004Q3 to

2005Q2). US insurers in the upper quartile of the cross-sectional distribution of premium

1The annual average of the 10-year government bond rate is strictly positive throughout the whole sample
after merging with systemic risk measures. I use its logarithm following Brunnermeier et al. (2020). The results
are robust to using the actual level of the interest rate level instead of its logarithm.

2Detailed variable definitions are given in Table IA.1. If available, I use banks’ consolidated balance sheet,
and the unconsolidated balance sheet otherwise.
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shares are defined as exposed to Katrina, remaining US insurers are in the control group.3

US insurance companies report premiums for direct insurance business (excluding reinsur-

ance business) at the state-level in Schedule T of their quarterly statutory filings. I retrieve

this data from S&P Global Market Intelligence. To detect reporting errors, I compare the sum

of premiums across states reported on Schedule T with that reported in the insurer’s overview

filings and exclude insurer-quarters if there is a discrepancy larger than 50 thd USD and 50%

of the average total direct premiums reported across the filing pages. I then calculate (1) the

sum of total P&C premiums written in Louisiana, Mississippi, and Alabama and (2) the sum

of total direct premiums written from 2004Q3 to 2005Q2 at the insurance group - state level.

To merge premiums to equity market data, I retrieve insurer groups’ stock tickers and

CUSIP identifiers from S&P Global Market Intelligence and match these to CUSIPs and stock

tickers, and manually check the resulting matching. In the sample of all (51) matched insurance

groups, I flag insurers as exposed to hurricane Katrina if they are headquartered in the US and

the ratio of premiums written in exposed states is in the upper quartile of the cross-sectional

distribution, and all other insurers as unexposed. By accounting for headquarter location, I

assign two non-US insurers to the control group which would otherwise be treated (AXA and

Beazley). The reason is that US premiums written are only a small fraction of the premiums

written by these insurers.4

A.2.4 Bubbles. Bubble indicators are based on the well-established Backward Sup Aug-

mented Dickey-Fuller (BSADF) approach by Phillips et al. (2015a,b) and Phillips and Shi

(2018), applied to the main stock price indices in 17 countries from 1987 to 2015.5 Bubble

characteristics include the current length of a boom or bust. Bubble indicators are merged to

the baseline sample of systemic risk measures and firm characteristics at the firm-year level.6

The “bubbles sample” covers 33 bubbles, 17 countries, and 693 financial firms from 1989 to

2015.7

3Since life insurers were relatively unaffected by the hurricane, it is reasonable to include them in the control
group. Although many lives were lost during Katrina, most of them were uninsured (see Towers Watson, “Hur-
ricane Katrina: Analysis of the Impact on the Insurance Industry” available at https://biotech.law.lsu.edu/
blog/impact-of-hurricane-katrina-on-the-insurance-industry-towers-watson.pdf).

4In 2005, less than 7% of AXA’s P&C gross premiums were written in the US (see Annual Report 2005). In
2009, 10% of Beazley’s gross premiums were written in the US (Source: S&P Global Market Intelligence).

5The BSADF approach uses multiple Augmented Dickey-Fuller tests to identify non-stationary behavior in
asset prices. For methodological details I refer to Brunnermeier et al. (2020), who kindly shared their sample of
bubble indicators with me.

6I label a firm-year as stock market boom or bust observation if the respective bubble phase is present in at
least 6 months of the firm’s headquarter country in that year.

7The sample includes Australia, Belgium, Canada, Denmark, Finland, France, Germany, Great Britain, Italy,
Japan, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United States.
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A.3 Additional Summary Statistics

Table IA.3. Additional summary statistics.
Boom & bust length & years summary statistics are provided conditional on bubble occurrence. Variable de-
scriptions and data sources are provided in Table IA.1.

Fragility sample
SIZEt−1 8,476 2.61 2.61 2.30 -1.10 6.52
LEVERAGEt−1 8,476 11.33 6.02 15.54 0.79 40.12
MARKET-TO-BOOKt−1 8,476 1.69 1.28 1.47 0.47 4.24
Ban & Bro sample
SIZEt−1 1,686 3.91 3.74 1.73 1.13 7.14
LEVERAGEt−1 1,686 14.58 9.74 14.67 2.96 42.25
MARKET-TO-BOOKt−1 1,686 1.46 1.27 0.90 0.45 3.04
LIQUIDITY RATIOt−1 1,686 0.44 0.30 0.64 0.05 1.03
DEMAND DEPOSITSt−1 1,686 0.20 0.17 0.15 0.02 0.47
IMPAIRED LOANSt−1 1,686 0.02 0.01 0.02 0.00 0.05
INTANGIBLE ASSETSt−1 1,686 0.02 0.01 0.03 0.00 0.07
Macro controls
INFLATION 8,476 2.04 1.98 1.54 -0.22 4.67
GDP GROWTH 8,476 4.11 4.21 2.80 -1.65 8.31
INVESTMENT GROWTH 8,476 -0.37 0.40 4.07 -6.91 4.22
CREDIT GROWTH 8,476 1.23 1.07 3.68 -4.55 7.26
log(INTEREST RATE) 8,476 0.98 1.30 0.98 -1.26 2.06
Market controls
3M YIELD CHANGE 8,476 -0.52 -0.07 2.11 -3.95 2.50
TERM SPREAD CHANGE 8,476 0.06 -0.26 2.30 -2.48 2.93
TED SPREAD 8,476 37.45 30.85 31.81 0.12 101.73
CREDIT SPREAD CHANGE 8,476 0.09 -0.08 1.88 -3.17 3.31
MARKET RETURN 8,476 0.13 0.20 0.39 -0.66 0.61
EQUITY VOLATILITY 8,476 1.05 0.97 0.45 0.49 2.08
Bubbles sample
BOOM LENGTH 1,197 2.14 1.67 1.67 0.00 4.92
BUST LENGTH 1,197 0.34 0.00 0.57 0.00 1.33
BOOM YEARS(t−4):t 1,197 2.73 3.00 1.33 1.00 5.00
BUST YEARS(t−4):t 1,197 0.41 0.00 0.70 0.00 2.00
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B Empirical Methodology and Estimation Details

B.1 Firm’s and System’s Return

A firm’s and system’s equity return are mechanically correlated if the system’s index included

the firm. This might bias systemic risk measures. I alleviate this concern by excluding firm I

from the associated system S for each pair (I, S) as described in the following.

Denote by MCI
t the market capitalization of firm I at time t in USD. By P I

t I denote a

firm I’s unpadded and unadjusted price of common equity in local currency, and by N I
t the

number of shares of the firm’s common equity. A system is given by a subset S ⊆ {1, ..., N},
where N is the number of all firms in the sample. Then, the index for system S excluding firm

I ∈ {1, ..., N} is given as the weighted average of remaining firms’ returns:

INDEX
S|I
t = INDEX

S|I
t−1

∑
s∈S\{I}

MCs
t−1∑

j∈S\{I}MCj
t−1

P s
t N

s
t

P s
t−1N

s
t−1

. (IA.1)

The system’s log equity return is

rSt = r
S|I
t = log

(
INDEX

S|I
t

INDEX
S|I
t−1

)
(IA.2)

and the firm’s log equity return is

rIt = log

(
P I
t N

I
t

P I
t−1N

I
t−1

)
. (IA.3)

B.2 Estimation Details

Denote by DI
t = 1{−rIt≥V aRI(q)} and DS

t = 1{−rSt ≥V aRS(q)} binary random variables for large

losses of financial institution I and the system S, respectively, where the stationary distribution

of (rxt )t satisfies P(−rxt ≥ V aRx(q)) = q for x ∈ {S, I}. Assume that (DI
t , D

S
t )t is a stationary

time series with the time-invariant means P(DI
t = 1) = P(DS

t = 1) = q and variances E[(DI
t −

q)2] = E[(DS
t − q)2] = q(1− q). Then, ∆CoSP equals

∆CoSPτ = (1− q) · rCC(τ), (IA.4)

where rCC(τ) is the (time-invariant and normalized) cross-correlation function of (DI
t , D

S
t )t,

defined as

rCC(τ) =
E
[
(DI

t − q)(DS
t+τ − q)

]
q(1− q)

. (IA.5)
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Using a standard non-parametric estimator for rCC(τ), a non-parametric estimator for ∆CoSP

is given by

∆ĈoSPτ =
1

q(n− τ)

n−τ∑
t=1

1{
−rIt≥V̂ aR

I
(q),−rSt+τ≥V̂ aR

S
(q)

} − q, (IA.6)

where the Value-at-Risk estimator is the negative of the nq-th (or [nq] + 1)-th) order statistic

of returns if nqx is an integer (if it is not).

To compute Spillover Persistence, I assume that ∆CoSP is exponentially declining with a

larger time-lag, ∆CoSPτ = αeβτ with α > 0 and β < 0. This assumption is motivated by

the dynamics of the non-parametric estimate ∆ĈoSPτ . I estimate the parameters α and β by

fitting ∆ĈoSPτ to aeβτ individually for each institution and estimation window using Matlab’s

trust-region-reflective algorithm. I disregard observations with α ≤ 0 or β ≥ 0 because, in such

cases, there is either no systemic risk present or the dynamics of ∆CoSP are implausible (as

they would imply that tail-returns are more correlated when they are further apart).

Figure 1 depicts the non-parametric and parametric estimates of ∆CoSP for an exemplary

institution. In Figure 1 (a), from a relatively tranquil market period, ∆CoSP is clearly expo-

nentially declining. Instead, in Figure 1 (b), from crisis times, ∆CoSP is almost constant. In

both cases, the parametric estimate fits the dynamics of the non-parametric estimate very well.

An important concern is that the parametric estimation of ∆CoSP induces a systematic

bias. I assess that concern in Figure IA.1. I start by examining the difference between the

non-parametric and parametric estimates pooled across all time-lags and firms. Figure IA.1

(a) shows that the average difference is essentially zero and its distribution symmetric around

zero in all years. This result strongly suggests that there is no systematic bias resulting from

the parametric estimation of ∆CoSP. The absolute value of the 10th and 90th percentile of

differences is approximately ±5%. The symmetry in the distribution is consistent with the

absence of a systematic bias, whereas the levels suggest that estimation errors are contained.

The most likely cause for a potential bias in the parametric estimation is the presence of

negative values of ∆CoSP. First, it is important to note that the parametric form αeβτ allows

for systematically negative ∆CoSP (in this case, it is α < 0). More generally, ∆CoSP may

be negative for two reasons: because of estimation errors or because its true value is negative.

Exemplary evidence is provided by Figure 1 (a), in which ∆ĈoSP drops below zero only in some

instances, which are clearly estimation errors around its average dynamics.

To examine the occurrence of negative values of ∆ĈoSP, Figure IA.1 (b) plots the share

of all firm-by-year observations with at least x negative time-lags. Whereas in almost 90% of

observations, there is at least one time-lag with a negative value of ∆ĈoSP, in only 10% of

observations, half (25) of the time-lags are associated with negative values. There are consider-

ably less instances of three consecutive time-lags with negative ∆ĈoSP. In only 5% of firm-year

pairs, at least one fifth of the time-lags τ exhibit a negative value of ∆ĈoSP and are followed

by lags j ∈ {τ +1, τ +2} with ∆ĈoSPj < 0. Thus, time-lags with negative values of ∆ĈoSP are

typically not followed by lags with negative values of ∆ĈoSP but, instead, occur in isolation.

These results are consistent with negative values of ∆ĈoSP resulting from estimation errors

rather than from systematically negative ∆CoSP.
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I disregard observations when the fitted parameters of αeβτ are such that α ≤ 0 or β ≥ 0

or when Average ∆CoSP is below 10−5. Figure IA.1 (c) shows that these criteria disregard less

than 25% of observations and, in the second half of the sample, less than 15% of observations.

This provides further support that the parametric estimation approach is appropriate.

Finally, in Figure IA.1 (d), I compare the baseline (parametric) measure for Spillover Persis-

tence with an alternative (non-parametric) version that weights time-lags with ∆ĈoSP, allowing

for negative weights ∆ĈoSP < 0. The figure shows substantial deviation between these two mea-

sures when Spillover Persistence is small. The large dispersion of the non-parametric estimate

in these cases suggest a significant impact of estimation errors. Moreover, the non-parametric

Spillover Persistence frequently drops below zero, inconsistent with its interpretation as average

time-lag.

Taken together, these observations suggest that the parametric estimation procedure for

∆CoSP does not create a systematic bias and is appropriate especially in the context of esti-

mating Spillover Persistence.

Figure IA.1. Estimation Details.
Figure (a) plots the average and 10/90th percentiles of the pooled distribution of the difference between the

non-parametric and parametric estimate for ∆CoSPτ across firms and time-lags τ . Figure (b) plots the share

of firm-by-year observations with at least x individually negative time-lags (solid line), i.e., ∆ĈoSPτ < 0 for at

least x time-lags τ , and with at least x consecutively negative time-lags (dashed line), i.e., ∆ĈoSPτ < 0 and

∆ĈoSPτ+1 < 0 and ∆ĈoSPτ+2 < 0 for at least x time-lags τ . Figure (c) plots the share of firms with a non-

parametric estimate for ∆CoSP but not for Spillover Persistence. Figure (d) is a scatter plot of all observations

for Spillover Persistence fitted to αeβτ against that based on the non-parametric estimate ∆ĈoSP (allowing that

∆ĈoSP < 0).

(a) Residuals from Exponential Fit. (b) Observations with Negative ∆CoSPτ .

(c) Observations without Exponential Fit. (d) Spillover Persistence: baseline vs. non-
parametric.
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C Additional Figures and Tables

Figure IA.2. Conceptual Illustration of ∆CoSP in Comparison with ∆CoVaR.
The figures depict (conditional) cumulative distribution functions (cdfs) of the system’s return losses (−rS) and

the quantiles and probabilities that correspond to (a) ∆CoSP and (b) ∆CoVaR. In Figure (a), the upper (black)

solid line is the unconditional cdf and the lower (blue) is the cdf conditional on the institution’s return losses

exceeding their Value-at-Risk (−rI ≥ V aRI
q). CoSP equals one minus the value of the conditional cdf at the

system’s Value-at-Risk. ∆CoSP is the difference between the two cdfs at the system’s Value-at-Risk. In Figure

(b), the upper (black) solid line is the cdf conditional on the institution’s return losses being at their median and

the lower (blue) is the cdf conditional on the institution’s return losses being at their distressed Value-at-Risk.

CoVaR is the respective quantile at 1− q. ∆CoVaR is the difference between the two quantiles corresponding to

1− q.

(a) ∆CoSP. (b) ∆CoVaR.

Figure IA.3. Contemporaneous Systemic Risk Measures: Evolution over Time.
The figures depict the annual mean and 25th and 75th percentiles of ∆CoVaR and MES across firms.
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Table IA.4. Correlation of Spillover Persistence with Other Measures.
This table reports the correlation of SPILLOVER PERSISTENCE based on ∆CoSP with other systemic risk
measures and SPILLOVER PERSISTENCE based on other systemic risk measures as well as the corresponding
adjusted R2.

1 2 3 4 5

Measure
AVERAGE

∆CoSP
∆CoVaR MES

SPILLOVER PERSISTENCE
( ∆CoVaR )

SPILLOVER PERSISTENCE
(MES)

Correlation 0.64 0.09 0.13 0.30 0.38
Adj.
R2

0.41 0.01 0.02 0.09 0.14

Figure IA.4. Comparison of Spillover Persistence across Different Systemic Risk Measures.
These figures plot SPILLOVER PERSISTENCE based on ∆CoSP (x-axis) against that based on (a) ∆CoVaR

and (b) MES (y-axis) as binscatter plots based on firm-by-year–level observations.
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Figure IA.5. Correlation of Spillover Persistence with Stock Market Volatility.
These figures plot the annual average of the 22-day trailing standard deviation of the system’s equity returns

(x-axis) against SPILLOVER PERSISTENCE for the system’s median institution (y-axis) based on (a) ∆CoSP,

(b) ∆CoVaR, (c) MES as binscatter plots based on system-by-year–level observations.
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D Sensitivity Analyses

D.1 Robustness

Table IA.5. Robustness: Fire Sales.
Each column presents difference-in-difference estimates for the effect of hurricane Katrina on
SPILLOVER PERSISTENCE (based on ∆CoSP) of exposed US property & casualty insurers relative to
other U.S. insurers:

τ̄i,t = POST-KATRINAt × EXPOSEDi + ui + εi,t,

where ui are firm fixed effects. POST-KATRINA equals 1 from August 25, 2005 onwards, and zero otherwise.
EXPOSED equals 1 if an insurer’s share of total P&C premiums in Alabama, Louisiana, and Mississippi from
2004Q3 to 2005Q2 relative to all insurance premiums is in the upper quartile across all U.S. insurers. The sample
is at the firm-day level. In columns 1 and 2 it runs from August 11 to September 12, 2005, and in columns 3 and
4 from August 18 to September 5, 2005. In columns 1 and 2, SPILLOVER PERSISTENCE is based on ∆CoSP,
in column 3 based on ∆CoVaR, and in column 4 based on MES. t-statistics are shown in brackets and based on
standard errors that are heteroskedasticity-robust. ***, **, and * indicate significance at the 1%, 5%, and 10%
levels.

1 2 3 4
Dependent variable: SPILLOVER PERSISTENCE

Underlying measure: ∆CoSP ∆CoVaR MES

Sample: U.S. insurers U.S. & CA insurers U.S. insurers

Window length: Long Baseline

POST-KATRINA× EXPOSED 0.41*** 0.57*** 0.49** 0.89***
[3.17] [4.44] [2.50] [4.61]

Firm FE Y Y Y Y
Time FE Y Y Y Y

No. of firms 22 27 22 22
No. of obs. 506 621 495 475
Adj. R2 0.895 0.895 0.792 0.855
Adj. R2 within 0.009 0.014 0.006 0.038
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Table IA.6. Spillover Persistence based on ∆CoVaR and Stock Market Bubbles.
This table presents OLS estimates analogously to those in Table 3 with the difference that
SPILLOVER PERSISTENCE is based on ∆CoVaR. t-statistics are shown in brackets and based on standard
errors clustered at the firm and country-by-year levels. ***, **, and * indicate significance at the 1%, 5%, and
10% levels.

1 2 3 4 5 6

Dependent
variable:

SPILLOVER PERSISTENCE (∆CoVaR)
SPILLOVER

PERSISTENCEt+4
SPILLOVER PERSISTENCE

Sample: Baseline Within bubbles Baseline

BOOM -5.43*** -1.56** -1.09 4.39*** 1.31 -0.43
[-4.06] [-2.04] [-1.23] [3.25] [0.94] [-0.31]

BUST -2.38 1.09 -0.35 -0.51 0.84
[-1.34] [0.93] [-0.27] [-0.36] [0.64]

BOOM ×
BURST DISTANCE

-3.31*** -2.59*** -0.53

[-7.65] [-6.21] [-1.16]
∆CoVaR 0.67*** 0.87***

[2.75] [3.18]

Macro
controls

Y Y Y Y Y Y

Market
controls

Y Y Y

Firm char-
acteristics

Y Y Y

Boom
& bust
length

Y Y Y Y Y

Boom &
bust years

Y

Firm FE Y Y Y Y Y Y
Time FE Y Y

No. of
firms

631 631 448 198 545 545

No. of obs. 5,983 5,983 4,380 840 4,961 4,961
Adj. R2 0.174 0.286 0.149 0.385 0.233 0.296
Adj. R2

within
0.057 0.044 0.049 0.291 0.121 0.050

p-value for H0: Same coefficient
on boom and bust

0.07 0.03 0.60
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Table IA.7. Robustness: Spillover Persistence and Crises.
Each column reports OLS regressions of banking crises indicators on systemic risk measures at the firm-year
level:

yc,t = αXi,t + Γ′Ci,t + εi,t,

where Xi,t is either SPILLOVER PERSISTENCE or ∆CoVaR and Ci,t is a vector of control variables and fixed
effects for firm i in country c. Output loss is the % loss in GDP associated with banking crises, following Laeven
and Valencia (2020). All crisis indicators are multiplied by 100 for readability. Variable definitions are analogous
to those in Table 4. t-statistics are shown in brackets and based on standard errors clustered at the firm and
country-by-year levels. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

1 2 3 4 5 6 7

Dependent variable:
100×

1{CRISISt+1}
100×

1{CRISISt+3}
100×

1{CRISISt+1}

100×
1{SYSTEMIC
CRISISt+1}

OUTPUT LOSSt+1

∆CoVaR 17.51*** -3.26***
[5.63] [-3.10]

SPILLOVER PERSISTENCE -0.49*** -0.22** -0.36*** -0.16***
[-3.61] [-2.14] [-3.19] [-3.78]

SPILLOVER PERSISTENCE
(∆CoVaR)

0.45*

[1.77]
SPILLOVER PERSISTENCE
(MES)

0.22

[1.11]

Macro controls Y Y Y Y Y Y
Market controls Y Y Y Y Y Y
Firm characteristics Y Y Y Y Y Y
Bank characteristics Y Y Y Y Y Y
AVERAGE ∆CoSP/∆CoVaR/MES Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y Y
Time FE Y Y Y Y Y Y

No. of firms 633 633 600 598 590 620 633
No. of obs. 6,833 6,833 6,031 5,943 5,614 6,722 6,833
Adj. R2 0.159 0.745 0.755 0.063 0.087 0.623 0.702
Adj. R2 within 0.132 0.314 0.246 0.022 0.038 0.318 0.371
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Table IA.8. Robustness with Prewhitened CoSP: Spillover Persistence and Financial Conditions.
This table presents OLS estimates using prewhitened CoSP analogously to those in Table 2. t-statistics are shown
in brackets and based on standard errors clustered at the firm level in columns (1) and (2) and at the firm and
country-by-year levels in column (3). Standard errors in columns (4) and (5) are heteroscedasticity-consistent.
***, **, and * indicate significance at the 1%, 5%, and 10% levels.

1 2 3 4 5
(A) Macro-financial conditions (B) Fire sales

Dependent variable: SPILLOVER PERSISTENCE (prewhitened)

Sample: US Full US insurers

NFCI 4.58*** 4.26***
[19.57] [14.69]

CRISIS 1.45*** 4.14***
[5.67] [5.73]

CREDIT GROWTH -0.67*** -0.05
[-10.67] [-0.95]

3M YIELD CHANGE 1.04*** 0.51*
[10.72] [1.84]

TERM SPREAD CHANGE 0.56*** 0.28
[6.77] [1.19]

CREDIT SPREAD CHANGE 0.67*** 0.26
[10.68] [1.44]

POST-KATRINA× EXPOSED 0.16*** 0.16**
[2.79] [2.43]

POST-KATRINA -0.16***
[-2.79]

Firm FE Y Y Y Y Y
Time FE Y
Standardized coefficients

NFCI .298 .278

No. of firms 206 206 933 22 22
No. of obs. 2,753 2,753 9,986 286 286
Adj. R2 0.141 0.228 0.162 0.980 0.981
Adj. R2 within 0.095 0.186 0.051 0.045 0.007
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Table IA.9. Robustness with Prewhitened CoSP: Spillover Persistence and Stock Market Bub-
bles.
This table presents OLS estimates using prewhitened CoSP analogously to those in Table 3. t-statistics are shown
in brackets and based on standard errors clustered at the firm and country-by-year levels. ***, **, and * indicate
significance at the 1%, 5%, and 10% levels.

1 2 3 4 5 6

Dependent
variable:

SPILLOVER PERSISTENCE
(prewtd)

SPILLOVER
PERSISTENCEt+4 (prewtd)

SPILLOVER PERSISTENCE
(prewtd)

Sample: Baseline Within bubbles Baseline

BOOM -4.84*** -1.90*** -3.44** 2.61 3.62** 0.23
[-3.03] [-2.78] [-2.59] [1.62] [2.02] [0.23]

BUST -2.22 -0.21 -1.34 -0.26 1.10
[-1.26] [-0.25] [-1.43] [-0.20] [1.33]

BOOM ×
BURST DISTANCE

-1.95*** -2.96*** -0.78**

[-4.63] [-5.37] [-1.99]
∆CoVaR 0.08 0.20

[0.45] [0.98]

Macro con-
trols

Y Y Y Y Y Y

Market con-
trols

Y Y Y

Firm char-
acteristics

Y Y Y

Boom &
bust length

Y Y Y Y Y

Boom &
bust years

Y

Firm FE Y Y Y Y Y Y
Time FE Y Y

No. of firms 665 665 456 232 575 575
No. of obs. 6,975 6,975 4,835 1,026 5,773 5,773
Adj. R2 0.235 0.464 0.105 0.454 0.329 0.494
Adj. R2

within
0.114 0.050 0.039 0.332 0.211 0.074

p-value for H0: Same coefficient
on boom and bust

0.10 0.09 0.12
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Table IA.10. Robustness with Prewhitened CoSP: Spillover Persistence and Fragility in the
Financial System.
This table presents OLS estimates using prewhitened CoSP analogously to those in Table 4. t-statistics are shown
in brackets and based on standard errors clustered at the firm and country-by-year levels. Standardized coefficients
are the change in the dependent variable for a standard deviation change in SPILLOVER PERSISTENCE. ***,
**, and * indicate significance at the 1%, 5%, and 10% levels.

1 2 3 4 5 6 7 8
Dependent variable: LEVERAGEt+1 CDSt+1 100× 1{CRISISt+1}

Sample: Baseline Ban & Bro Baseline

SPILLOVER PERSISTENCE
(prewtd)

-0.06** -0.08 -0.02 -0.00 -0.01** -0.67** -0.38*** -0.39***

[-2.14] [-1.64] [-0.41] [-1.09] [-2.41] [-2.07] [-3.31] [-3.40]
SPILLOVER PERSIST.× SIZE 0.07** 0.01**

[2.15] [2.21]
SPILLOVER PERSIST. ×
LEVERAGE

-0.15** -0.01

[-2.45] [-1.65]
SPILLOVER PERSIST. ×
MARKET-TO-BOOK

-0.08** -0.02***

[-2.49] [-3.07]
SPILLOVER PERSIST. ×
LIQUIDITY RATIO

0.05 0.02*

[1.48] [1.87]
SPILLOVER PERSIST. ×
DEMAND DEPOSITS

-0.04 -0.01

[-1.50] [-1.38]
SPILLOVER PERSIST. ×
TIME DEPOSITS

0.03 -0.00

[1.00] [-0.34]
SPILLOVER PERSIST. ×
IMPAIRED LOANS

-0.09*** -0.03***

[-2.77] [-2.98]
SPILLOVER PERSIST. ×
INTANGIBLE ASSETS

-0.08*** -0.01*

[-2.81] [-1.92]
∆CoVaR -3.13***

[-3.02]

Macro controls Y Y Y Y Y Y Y
Market controls Y Y Y Y Y
Firm characteristics Y Y Y Y Y Y Y
Bank characteristics Y Y Y Y Y Y
AVERAGE ∆CoSP Y Y Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y
Time FE Y Y Y Y Y Y

No. of firms 790 189 189 76 76 625 625 625
No. of obs. 8,276 1,603 1,603 671 671 6,667 6,667 6,667
Adj. R2 0.722 0.857 0.861 0.815 0.832 0.163 0.744 0.745
Adj. R2 within 0.186 0.167 0.189 0.097 0.181 0.136 0.308 0.312

Standardized coefficient: -0.03 -0.04 -0.01 -0.03 -0.10 -0.11 -0.06 -0.06
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D.2 Liquidity and Autocorrelation of Stock Returns

Daily turnover by value (VA) and volume (VO) are from Thomson Reuters Datastream at the

security-day-level. V Oi,t is the median daily turnover by volume (in thd USD) for firm i’s

common equity in time period t. The Amihud measure is defined by (see Amihud, 2002)

ILLIQi,t =
1

nt

nt∑
τ=1

|ri,t,τ |
V Ai,t,τ

, (IA.7)

where nt is the number of observations in time period t, ri,t,τ is the daily return and V Ai,t,τ the

turnover by value in thd USD on day τ in time period t for firm i’s common equity. To calculate

the turnover by volume of the system, I use the average daily turnover volume across firms in

the system. The Amihud measure for the system is based on the system’s value-weighted return

and average daily turnover by value. Finally, I winsorize all variables at the 1% and 99% levels.

Table IA.11. Spillover Persistence and Stock Market Liquidity.
This table reports estimates from OLS panel regressions of SPILLOVER PERSISTENCE based on ∆CoSP in
columns (1) to (4) and of AVERAGE ∆CoSP in columns (5) to (8) at the firm-year level. The explanatory
variables are a financial institution’s and the system’s stock market turnover in columns (1), (2), (5), and (6),
and the financial institution’s and system’s Amihud measure for illiquidity in columns (3), (4), (7), and (8).
t-statistics are shown in brackets and based on standard errors clustered at the firm and country-by-year levels.
***, **, and * indicate significance at the 1%, 5%, and 10% levels.

1 2 3 4 5 6 7 8
Dependent variable: SPILLOVER PERSISTENCE AVERAGE ∆CoSP

log(FIRM TURNOVER) 0.20 -0.16 0.01*** 0.00***
[0.78] [-0.85] [4.30] [3.88]

log(SYSTEM TURNOVER)2.46*** 1.27*** 0.01*** 0.00**
[8.57] [2.96] [8.73] [2.12]

FIRM ILLIQ -0.00 -0.00 -0.00*** -0.00**
[-1.50] [-0.61] [-2.74] [-2.04]

SYSTEM ILLIQ -3.66 -3.07 -0.04** -0.02*
[-0.88] [-0.96] [-2.25] [-1.79]

Firm FE Y Y Y Y Y Y Y Y
Time FE Y Y Y Y
No. of firms 935 935 728 728 935 935 728 728
No. of obs. 10,179 10,179 6,008 6,008 10,179 10,179 6,008 6,008
Adj. R2 0.214 0.410 0.147 0.385 0.321 0.714 0.181 0.683
Adj. R2 within 0.097 0.006 0.003 0.001 0.202 0.018 0.013 0.005

To examine the relation between SPILLOVER PERSISTENCE and the auto-serial corre-

lation of stock prices, I estimate the autocorrelation function of the system’s return for each

estimation window. Then, I regress CoSP measures on the average autocorrelation coefficient

across lags of 1 to 10 days. Table IA.12 reports the estimates. There is neither a significantly

positive correlation between the level of autocorrelation and SPILLOVER PERSISTENCE nor

AVERAGE ∆CoSP.
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Table IA.12. Spillover Persistence and Stock Return Autocorrelation.
This table reports estimates from OLS panel regressions of SPILLOVER PERSISTENCE based on ∆CoSP in
columns (1) and (2) and of AVERAGE ∆CoSP in columns (3) and (4) at the firm-year level. The explanatory
variable is the average (across 1 to 10-day lags) autocorrelation of the system’s stock returns. t-statistics are
shown in brackets and based on standard errors clustered at the firm and country-by-year levels. ***, **, and *
indicate significance at the 1%, 5%, and 10% levels.

1 2 3 4
Dependent variable: SPILLOVER PERSISTENCE AVERAGE ∆CoSP

ACF1:10 -145.83*** -43.22 -1.12*** -0.18
[-4.87] [-0.94] [-7.36] [-1.20]

Firm FE Y Y Y Y
Time FE Y Y
No. of firms 938 938 938 938
No. of obs. 10,234 10,234 10,234 10,234
Adj. R2 0.180 0.402 0.307 0.709
Adj. R2 within 0.057 0.001 0.187 0.003
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