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Abstract

We study insurance markets with individuals that have limited financial literacy. In our model,

complexity of insurance contracts causes individuals to be uncertain about insurance payouts.

As a result, a trade-off between second-order (risk aversion) and third-order (prudence) risk

preferences drives insurance demand. Very prudent individuals desire more insurance coverage

when contract complexity increases, while the effect is reversed for less prudent individuals.

We characterize the competitive market equilibrium with complex contracts when firms can

exert costly effort to reduce complexity. Based on the equilibrium analysis, we propose a

monetary measure for the welfare cost of financial illiteracy and show that it is mainly driven

by risk aversion. We conclude with a discussion about implications for policy interventions

and consumer protection.
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1 Introduction

Insurance is the main financial product that households use for risk management – across

different levels of education, income, and other socioeconomic factors (TNS opinion & social

(2016), Berchick et al. (2018)). However, it is difficult for consumers to completely understand

insurance contracts.1 This non-comprehension of insurance is likely driven by a combination

of limited financial literacy of consumers and the complexity of insurance contracts.2 In this

paper, we develop a theoretical model that sheds light on the interaction between equilibrium

insurance take-up and prices, consumers’ financial literacy and risk attitudes, and insurance

contracts’ complexity.

In our model, financially illiterate (but otherwise rational) consumers do not fully understand

the terms of offered insurance contracts and, as a result, face uncertainty about the insurance

payout in case of losses. For example, individuals may be uncertain which specific losses are

covered by a given contract. A prime example are health insurance plans available at U.S.

health exchanges: individuals are informed about prices and average indemnity payments; yet,

the actual percentage of reimbursed claims can widely vary depending on treated conditions

and medical providers.3

First, in a partial equilibrium analysis, we show that the effect of contract complexity on

illiterate consumers’ insurance demand is driven by third-order risk attitudes, namely pru-

dence. Very prudent consumers demand more insurance when facing more complex insurance

contracts, a behavior often called precautionary insurance (e.g., by Eeckhoudt and Kimball

(1992)). We derive conditions for the existence of precautionary insurance, which depend on

the level of prudence as well as the level of contract complexity. Specifically, we show that

financial illiteracy can result in inefficiently large insurance coverage. This result is consistent

1Nelson et al. (2000), Policygenius (2016), The Guardian Life Insurance Company of America (2017), and
Fairer Finance (2018) review surveys that show that insurance policyholders rarely understand the terms of
their contracts. Gaurav et al. (2011) and Cole et al. (2013) find a positive correlation between financial literacy
and demand for rainfall insurance in a field experiment in rural India. In a lab experiment, Bateman et al.
(2016) find that cognitive abilities are important determinants for insurance decisions. Cogan (2010, p. 2009f.)
argues that “consumers do not fully grasp their health insurance coverage because the jargon found in many
health insurance contracts is impenetrable to most Americans.”

2Lusardi and Mitchell (2011, 2014) and Girolamo et al. (2015) provide empirical evidence for substantial
variation in financial literacy with an overall low level across different subject populations.

3Average indemnity payments depend on the ”metal” level, which ranges from Bronze to Platinum, where
Bronze plans pay 60% of expected health costs while Platinum plans pay 90% of expected costs, on average.
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with Harrison et al. (2020)’s finding that welfare-reducing insurance decisions by financial

illiterate individuals often result from too much–and not too low–insurance take-up.

Second, we extend the model to a competitive market equilibrium by allowing firms to engage

in costly effort that reduces the complexity of insurance contracts. This exercise highlights

a simple but important difference between the effects of consumers’ financial literacy and

of contract complexity: in a frictionless competitive equilibrium, policy interventions that

alter the level of contract complexity are not welfare-increasing since firms’ marginal effort

cost of reducing complexity offsets consumers’ marginal utility gain from lower complexity in

equilibrium. In contrast, interventions that increase the level of financial literacy may increase

welfare since they (1) reduce consumers’ uncertainty about product payout and, thereby, (2)

allow them to make better decisions.

Third, we build on the equilibrium analysis to provide a novel measure for the welfare-impact

of financial illiteracy, the financial illiteracy premium. This measure computes the maximum

amount that a social planner would be willing to pay to eliminate financial illiteracy. Im-

portantly, the financial illiteracy premium accounts for changes in the market equilibrium in

response to changes in the level of consumers’ financial literacy. This approach is not con-

strained to the insurance market but widely applicable, for example to estimate the cost of

financial illiteracy in experiments or surveys. It is thus helpful beyond its purpose in our

theoretical measure. We provide comparative statics of the premium and show that its key

driver is risk aversion since more risk averse consumers are more exposed to changes in their

uncertainty about insurance contract payouts. We conclude with a discussion about possible

policy interventions that aim to reduce the welfare cost of financial illiteracy.

This paper contributes mainly to three lines of research. First, we contribute to studies on

the effect of financial literacy in insurance markets. To the best of our knowledge, our pa-

per is the first to present a theoretical analysis on this topic. Compared to other financial

products, insurance is particularly relevant from a policy perspective since it concerns the

vast majority of the population – regardless of income and education. For instance, more

than 70% of U.S. consumers were covered by health insurance in 2017, regardless of their

educational attainment (Berchick et al. (2018)).4 Other studies on insurance and financial

literacy either conduct field (Gaurav et al. (2011), Cole et al. (2013), Hill et al. (2016)) or

4For example, Berchick et al. (2018) report that 74% of consumers without a high school diploma were cov-
ered by health insurance. Penetration was larger for those with high school diploma, an associate’s, bachelor’s,
graduate, or professional degree. More than half of each of these groups’ coverage was provided in the private
market.
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laboratory experiments (Harrison et al. (2020)). Interestingly, Harrison et al. (2020) find that

the welfare-effect of insurance decisions positively correlates with financial literacy, and that

welfare-reducing decisions typically result from too much insurance take-up, i.e., overinsur-

ance. This is consistent with the prediction of our model for sufficiently prudent individuals.

Second, we add to a growing literature that incorporates financial literacy in models of fi-

nancial decision-marking. Previous studies by Jappelli and Padula (2013), Kim et al. (2016),

Neumuller and Rothschild (2017), and Lusardi et al. (2017) focus on investment choices in

partial equilibrium with fixed supply, which we extend by our focus on insurance contracts

and with a general equilibrium analysis. Several studies incorporate limited financial literacy

as a specific bias.5 Other studies directly assumed that literacy increases expected income

(e.., Lusardi et al. (2017)). Our approach complements these studies by introducing uncer-

tainty as a channel for (limited) financial literacy to affect decision-making. We argue that,

because consumers only partially process existing information (e.g., the fine-print of insurance

contracts), they are left uncertain about a product’s final payout. Due to this channel, there

is an important interaction between risk attitudes and financial (il-)literacy in our model.

Although consumers dis-like complexity, firms offer complex contracts in our model because

it is costly to reduce complexity, e.g., due to preparing additional explanatory materials.6

This differs, e.g., from Oehmke and Zawadowski (2019)’s model, in which complexity is costly

since it requires consumers’ attention, while complexity is also beneficial since it enables

customization. This set-up is arguably realistic in markets with sophisticated participants

(e.g., derivatives markets). Instead, we focus on the case where consumers are not sufficiently

sophisticated to understand – and to value – complex contracts, which appears to be an

accurate description of most retail insurance markets.

Third, our modeling of contract complexity builds on the literature of decision-making under

uncertainty, specifically when insurance contract payouts are risky. Traditionally, studies have

focused on nonperformance risk of insurance contracts (e.g., Doherty and Schlesinger (1990),

Briys et al. (1991), Wakker et al. (1997), and Zimmer et al. (2018)). In contrast to nonper-

formance risk, contract complexity does not have a wealth-effect, i.e., larger complexity does

5For example, unsophisticated consumers in Carlin (2009) choose randomly among products, and in Gabaix
and Laibson (2006) they neglect information about product add-ons and their prices.

6In our model, there is no possibility for firms to exploit the unsophistication of consumers. Possible
extensions of our model could take this into account, e.g., by allowing firms to engage in opaque pricing (as
in the models of DellaVigna and Malmendier (2004), Gabaix and Laibson (2006), Carlin (2009), Anagol and
Kim (2012), and Campbell (2016)).
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not reduce the insurance contract’s expected payout but only increases uncertainty about the

payout. Therefore, the effect of contract complexity on insurance demand differs from that of

nonperformance risk.7 It also differs from models with additive background risk (e.g., Doherty

and Schlesinger (1983), Eeckhoudt and Kimball (1992), Fei and Schlesinger (2008)) since the

uncertainty from contract complexity is multiplicative to the (endogenous) level of insurance.

Similar to indemnity uncertainty in Lee (2012), the presence of contract complexity implies

that partial insurance coverage is optimal when consumers exhibit low levels of prudence and

prices are actuarially fair. We significantly generalize this result in several dimensions as we

derive (1) comparative statistics of insurance demand with respect to contract complexity, (2)

the critical level of prudence such that more (less) prudent individuals increase (decrease) in-

surance coverage upon an increase in contract complexity, and (3) the critical level of contract

complexity such that a further increase in complexity reduces insurance demand regardless of

prudence. Finally, we extend the previously mentioned studies by endogenizing the level of

contract complexity in competitive equilibrium.

The remainder of this article is organized as follows. Section 2 introduces and examines a

partial equilibrium model for insurance demand. In Section 3, we endogenize the level of

contract complexity in competitive equilibrium and propose a new measure for the welfare

cost of financial illiteracy. The final section concludes. Proofs are provided in the Appendix.

2 A Model of Contract Complexity and Insurance Demand

2.1 Model

Individuals are endowed with initial wealth w0 > 0 and face the risk of a loss L, 0 < L <

w0. The loss occurs with probability p ∈ (0, 1). Individuals are risk averse with a thrice

differentiable and concave standard utility function u(·), u′(·) > 0 and u′′(·) < 0. Firms offer

co-insurance contracts and have financial resources such that they are willing and able to sell

any number of contracts that they think will make non-negative expected profit. Co-insurance

contracts pay indemnity Ĩ per unit price conditional on a loss, and zero otherwise. Individuals

7In Appendix B we show that the set of payout distributions under contract complexity differs substantially
from that with contract nonperformance. Moreover, our model provides unambiguous comparative statics
with respect to contract complexity, while the comparative static of insurance demand with respect to contract
nonperformance is typically ambiguous (e.g., Doherty and Schlesinger (1990)).
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pay the premium $α and receive the indemnity payment $αĨ in case of a loss, where α ≥ 0 is

the chosen insurance coverage.

Our model introduces uncertainty about the indemnity as a channel for contract complexity

and financial illiteracy to affect decision-making: the less individuals understand an insurance

contract (e.g., about the losses covered), the more uncertain they are about the indemnity

payment.8 Accordingly, we assume that individuals form subjective beliefs about the indem-

nity payment Ĩ, where Ĩ is a non-negative random variable. We assume that individuals’

beliefs are parameterized by Ĩ = I+ ϑ̃, where I > 0 is the expected payout and ϑ̃ a mean-zero

risk, E[ϑ̃] = 0.

Individuals’ beliefs about the indemnity Ĩ are conditional on the individuals’ imperfect per-

ception of the insurance contract and, thus, may be biased. For example, the contract might

actually pay I∗ > 0, while individuals expect it to pay E[Ĩ] = I = I∗(1 + λ), where λ > −1.

We only require that I is sufficiently large to result in positive insurance demand and, in

particular, that I > 1, implying that individuals expect to receive more than $1 (in case of

a loss) per $1 premium paid.9 We will make the stronger assumption that expectations are

consistent in expectation with contract terms, I = I∗ > 0, in the general equilibrium analysis

in Section 3.

For simplicity, we assume a symmetric binary distribution of beliefs about Ĩ.10 Without loss

of generality, we parameterize Ĩ = I + ϑ̃ with I > 1 and P(ϑ̃ = ε) = P(ϑ̃ = −ε) = 1/2,

ε ≥ 0. Consistent with this assumption of symmetric beliefs, Girolamo et al. (2015) find that

individuals often have symmetrically distributed beliefs about the correct answer to questions

about financial and economic knowledge.11 We call ε the experienced contract complexity and

8This interpretation of financial literacy is consistent with Girolamo et al. (2015)’s notion of financial literacy
as the precision of ”subjective beliefs that someone has over possible responses to some question” (Girolamo
et al. (2015, p.1)). Accordingly, individuals form beliefs about the payout of their insurance contract while
being aware that actual payouts from their contract include a random component. Complexity of contract
language and exposition, low cognitive abilities, and imperfect knowledge of insurance terms blur individuals’
belief about the contract payout.

9It is straightforward to show that optimal insurance coverage is positive if I > 1 + 1−p
p

u′(w0)
u′(w0−L)

> 1.

10To alleviate concerns about the restrictiveness of the assumption of a binary distribution for Ĩ, Appendix
C shows that our main results also hold for more general distributions.

11Due to symmetry, an increase in ε is a mean-preserving increase in uncertainty about the indemnity
payment in the sense of Rothschild and Stiglitz (1970). The model is easily extended to allow for non-symmetric,
biased risk ϑ̃, e.g., by reducing the probability of the ”good” state with payment α(I+ε). Importantly, imposing
a bias E[ϑ̃] ̸= 0 will induce a wealth effect on top of the risk effect of complexity. For example, E[ϑ̃] < 0 biases
insurance demand toward zero, everything else equal.
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assume that it is inversely related to the ease with which individuals understand an insurance

contract (and accompanying explanatory material).

Throughout the paper, we treat the uncertainty ϑ̃ caused by contract complexity as a be-

havioral bias of individuals with limited financial literacy, explicitly allowing for individuals’

beliefs to be inconsistent with the ex post realization of contract payouts.12 It would be

straightforward to rationalize beliefs, e.g., by assuming that there is random interpretation of

terms by claims adjusters or courts, or that the contract available to individuals is randomly

drawn ex-ante from a large set of contracts (with different ε and indemnity payments) and is

unobservable for individuals.

In this section, we fix I and vary the experienced contract complexity ε to assess its effect

on insurance demand. In Section 3, we split experienced complexity into a contract’s actual

complexity ν, reflecting the (inverse of the) accessibility of the contract and explanatory

material (such as the use of simple language or explanatory figures), and individuals’ financial

illiteracy β, namely the (inverse of the) ease at which individuals understand financial (and

insurance-related) information in general (e.g., their cognitive abilities), such that ε = β × ν.

w0

w0 −L+ α(I + ϑ̃− 1) = w1

w0−L+α(I−ε−1) = w1,−

w0−L+α(I+ε−1) = w1,+loss

w0 − α = w2

no
los

s

Figure 1: Distribution of individuals’ wealth.

Figures 1 and 2 illustrate the resulting distribution of individuals’ wealth. Note that the

analysis of insurance demand is from individuals’ perspective, i.e., conditional on their beliefs

about Ĩ. Upon purchasing α units of insurance, individuals pay the premium $α. Without

contract complexity (ε = 0), individuals receive the indemnity payment $αI with certainty

12At the same time, individuals are aware that they face uncertainty about the indemnity payout, i.e. they
are not completely myopic. Many studies provide evidence that behavioral biases and heuristics affect insurance
decisions, e.g., affection (Hsee and Kunreuther (2000)), heuristic thinking (Jaspersen and Aseervatham (2017)).
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Figure 2: States of wealth for fixed coverage.
Distribution of individuals’ wealth with changing level of relative insurance coverage αI/L (which is the ex-
pected relative payment in case of a loss) for expected unit indemnity payment I = 2.5 and fixed complexity
ε = 0.1× I = 0.25, implying a relative premium loading on the actuarially fair price of 1−pI

pI
= 1/3.

in the loss state. Otherwise (ε > 0), individuals face uncertainty about the actual indemnity

payment and (belief to) receive either $α(I + ε) or $α(I − ε) in case the loss occurs.13

The fact that individuals assign a positive probability to receiving more than I does not

necessarily imply that the insurance payment in this ”good” state exceeds the actual loss,

i.e., that α(I + ε) > L. Insurance companies might in fact restrict insurance payments to

not exceed L and individuals may be aware of that. In this case, individuals would maximize

expected utility over α ∈ [0, L/(I + ε)]. In the following, we will let individuals choose among

unbounded insurance take-up to shed light on the demand for complex insurance contracts

in general. Since expected utility will be strictly concave in α, utility-maximizing coverage

α∗ > L/(I + ε) will simply imply that individuals demand the highest possible coverage up

to α∗.

13Note that this model of insurance contracts is different from contracts with nonperformance risk, as we
show in Appendix B.

7



2.2 Insurance Demand

Upon the purchase of α units of insurance, an individual’s expected utility is given by

EU(α, ε, I) = pE[u(w0 − L+ α(I + ϑ̃− 1)︸ ︷︷ ︸
=w1

)] + (1− p)u(w0 − α︸ ︷︷ ︸
=w2

) (1)

=
p

2

(
u(w0 − L+ α(I + ε− 1)︸ ︷︷ ︸

=w1,+

) + u(w0 − L+ α(I − ε− 1)︸ ︷︷ ︸
=w1,−

)
)
+ (1− p)u(w0 − α︸ ︷︷ ︸

=w2

),

where we denote state-dependent utilities by ux = u(wx), u
′
x = u′(wx), u

′′
x = u′′(wx), u

′′′
x =

u′′′(wx) with x ∈ {1; 1,−; 1,+; 2}.

Without contract complexity, our model collapses into the standard model for insurance

demand as in Mossin (1968) and Doherty (1975). The first-order condition (FOC) then

equals

(I − 1)u′1 =
1− p

p
u′2, (2)

and full insurance (αI = L) is optimal if the premium is perceived as actuarially fair, i.e.,

if 1 = pI, implying I − 1 = 1−p
p and thus u′1 = u′2 by the FOC. This standard result is

often referred to as Mossin’s Theorem. Partial insurance (αI < L) is optimal with a positive

proportional premium loading, i.e., if pI < 1, implying I − 1 < 1−p
p and thus u′1 > u′2.

Insurance demand changes with the introduction of contract complexity. If ε > 0, the insur-

ance payout becomes uncertain itself, increasing an individual’s risk in the loss state upon

purchasing insurance (see Figure 2). With contract complexity, the FOC does not only de-

pend on marginal utility in the loss and no-loss states, but also on differential marginal utility

within the loss state:

(I − 1)E[u′1]︸ ︷︷ ︸
(I)

− ε
u′1,− − u′1,+

2︸ ︷︷ ︸
(II)

=
1− p

p
u′2. (3)

Larger contract complexity does not affect marginal utility in the no-loss state u′2, where no

indemnity is paid. Instead, complexity raises (II) the differential marginal utility in the loss

state, u′1,−−u′1,+, since u
′′(·) < 0, reflecting that insurance is less valuable with higher contract

complexity. It also raises (I) the expected marginal utility in the loss state if marginal utility

is convex. Since u′2 is increasing with insurance coverage, contract complexity then results in a

trade-off between (I) more and (II) less insurance coverage to reduce (I) risk across the loss and
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no-loss state and (II) risk within the loss state. As a result, introducing contract complexity

implies that Mossin’s Theorem may not hold any more. The ultimate effect depends on the

convexity of marginal utility.

Following Kimball (1990), we call individuals with convex marginal utility (i.e., with u′′′ > 0)

prudent. Eeckhoudt et al. (1995) and Eeckhoudt and Schlesinger (2006) show that prudent

individuals are characterized by a preference for attaching a mean-preserving risk to the best

outcomes of a lottery rather than to the worst ones. Similar to the rationale of precaution-

ary saving developed by Rothschild and Stiglitz (1971) and Kimball (1990), complexity can

have two effects on insurance demand: on the one hand, uncertain payouts make insurance

less effective in mitigating overall risk, which might reduce insurance demand for risk-averse

individuals. On the other hand, insurance transfers the payout risk to higher wealth levels

and, thus, prudent individuals might want to insure more as a response to increased risk. The

final effect depends on the degree of prudence as well as the level of contract complexity, as

the following lemma shows.

Lemma 2.1 (Insurance demand). Let I > 1.

(1) If individuals are not prudent (u′′′(·) ≤ 0), optimal insurance coverage decreases with the

level of contract complexity ε.

(2) For all ε < I − 1, optimal insurance coverage increases with ε if, and only if,

− ū′′′1
ū′′1

>
1− αε

u′′
1,++u′′

1,−
u′
1,−−u′

1,+

α(I − 1)
(4)

in equilibrium, where ū′′′1 =
u′′
1,−−u′′

1,+

w1,−−w1,+
and ū′′1 =

u′
1,−−u′

1,+

w1,−−w1,+
. If ε ≥ I−1, optimal insurance

coverage decreases with ε.

The following corollary shows that condition (4) can be transformed into a condition for the

coefficient of absolute prudence, PR = −u′′′

u′′ (as introduced by Kimball (1990)). If prudence

is sufficiently large and ε < I − 1, optimal insurance coverage increases with the level of

complexity:

Corollary 2.1 (Precautionary insurance). Let I > 1, ε < I − 1, and u′′′ > 0. If

− ū′′′1
u′′1,−

>
2

α(I − 1)
(5)
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in equilibrium, optimal insurance coverage increases with the level of complexity ε, where

ū′′′1 =
u′′
1,−−u′′

1,+

w1,−−w1,+
is the average slope of u′′ in the loss state.

The corollary finds that precautionary insurance is driven by the average curvature relative to

the slope of marginal utility in the loss state. Since − ū′′′
1

u′′
1,−

is increasing with the coefficient of

absolute prudence PR for w ∈ [w1,−, w1,+], prudence indeed drives precautionary insurance.14

While Lemma 2.1 and Corollary 2.1 are for binary indemnity risk, in Appendix C we gener-

alize the results and show that optimal insurance coverage increases with a mean-preserving

increase (á la Rothschild and Stiglitz (1971)) of arbitrarily distributed indemnity uncertainty

if individuals are sufficiently prudent.

Corollary 2.1 also implies that individuals’ marginal willingness to pay for an increase in

coverage (i.e., the marginal rate of substitution between price and coverage) increases with

contract complexity if individuals are sufficiently prudent and ε < I − 1.15 In this case, less

financially literate individuals buy more insurance coverage in competitive equilibrium (with

symmetric information) if insurance prices are linear in insurance coverage.

Corollary 2.2. Define contracts in coverage-price (α− P ) space, where the indemnity is αI

for fixed I > 1. If individuals are sufficiently prudent and ε < I − 1, the marginal rate of

substitution between price and coverage along indifference curves in α−P -space increases with

ε for every coverage-price pair.

To illustrate our findings, assume that individuals maximize exponential utility with constant

absolute risk aversion. Exponential utility allows for a straightforward assessment of individ-

uals’ degree of prudence since then the coefficient of absolute risk aversion ARA equals the

coefficient of absolute prudence.16 As illustrated in Figure 3, we show the existence of two

opposing effects of contract complexity: on one hand, an increase in complexity reduces opti-

mal insurance coverage with low prudence, as illustrated in Figure 3 (a). Hence, a relatively

14Note that a larger degree of prudence also changes the shape of the utility function and therefore the
equilibrium allocation. Conditions (4) and (5) must hold in equilibrium.

15Following previous literature, in this corollary we slightly differ in our notation and separately vary contract
price and insurance coverage for fixed expected indemnity I.

16Calibrating ARA for exponential utility is also complicated by the fact that it reflects both risk aversion
and prudence. To highlight the effects of prudence, we sometimes consider a value of ARA that seems large
compared to experimental evidence for risk aversion (e.g., by Holt and Laury (2002) and Harrison and Rutström
(2008)), such as ARA = 0.2. However, the calibration is consistent with empirical estimates for prudence. For
example, in Ebert and Wiesen (2014)’s experiment to elicit prudence, the average individual behaves roughly
consistently to ARA = 0.18 and RRA = 2.
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(a) ARA = 0.05.
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Figure 3: Optimal insurance coverage with respect to changes in complexity.
The figures depict the optimal insurance coverage (α∗I) relative to the loss size (L) for changes in the level
of complexity (ε) relative to the expected indemnity payment (I). In this example, individuals with initial
endowment w0 = 100 maximize exponential utility with the coefficient of absolute risk aversion ARA for a loss
L = 50 that occurs with probability p = 0.3 and expected insurance unit indemnity payment I = 2.5, which
implies a relative premium loading on the actuarially fair price of 1−pI

pI
= 1/3.

imprudent individual is not willing to accept additional overall uncertainty resulting from

more complex insurance. On the other hand, contract complexity raises insurance demand

if prudence is large and complexity is low, which is the situation in Figure 3 (b). Following

Fei and Schlesinger (2008), we call this effect precautionary insurance. The reason for precau-

tionary insurance is that, for sufficiently prudent individuals, marginal utility of insurance,

pu′1(I + ϑ̃ − 1) − (1 − p)u′2, is convex in complexity risk ϑ̃. Then, the marginal benefit of

insurance is increasing with the variability of ϑ̃, resulting in higher demand for insurance.

Precautionary insurance occurs when individuals prepare for an increase in uncertainty by

increasing wealth in both loss states via increasing insurance coverage. This is possible only if

the level of contract complexity is lower than the net payout of insurance ε < I−1. If instead

ε > I − 1, wealth in the worst possible state w1,− is decreasing with insurance coverage, i.e.,

dw1,−/dα = I − ε− 1 < 0 if ε > I− 1. In this case, individuals cannot raise wealth in w1,− by

increasing insurance coverage. As a result, insurance demand unambiguously decreases with

contract complexity, as Figure 3 illustrates for ε/I > 0.6. Hence, precautionary insurance

does not only depend on the level of prudence but also on the level of contract complexity

itself.17

17This finding is different from models with additive background risk, which unambiguously raises insurance
demand if individuals are prudent (e.g., Eeckhoudt and Kimball (1992), Gollier (1996), Fei and Schlesinger
(2008)).
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(a) Optimal states of wealth (ARA = 0.05).
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(b) Optimal states of wealth (ARA = 0.2).

Figure 4: Optimal states of wealth with respect to changes in complexity.
The figures depict individuals’ wealth (relative to the wealth endowment w0) conditional on optimal insurance
coverage for changes in the level of complexity (ε) relative to the expected indemnity payment (I). In this
example, individuals with initial endowment w0 = 100 maximize exponential utility with a coefficient of
absolute risk aversion γ = 0.2 for a loss L = 50 that occurs with probability p = 0.3. The expected indemnity
per unit paid for insurance is I = 2.5 which implies a relative premium loading on the actuarially fair price
equals 1−pI

pI
= 1/3. The vertical line in Figure (b) corresponds to ε = I − 1.

In Figure 4, we show the optimal wealth associated with the optimal insurance coverage from

Figure 3. With a relatively low degree of prudence, individuals reduce insurance coverage to

maintain a relatively small risk within the loss state, as Figure 4 (a) illustrates. In contrast,

precautionary insurance demand of a more prudent individual in Figure 4 (b) increases the

lowest possible wealth realization but amplifies risk within loss state for ε < I − 1, while this

effect reverses for ε > I − 1.

At the threshold, ε = I − 1, contract complexity offsets the net insurance payout: in this

case, wealth in the least favorable (loss) state, w1,−, is independent of insurance coverage,

since w1,− = w0 − L + α(I − 1 − ε) ≡ w0 − L for all α. Thus, optimal insurance coverage is

determined only by the trade-off between a large indemnity payment in w1,+ and suffering no

loss in w2. This reduces the individual’s optimization problem to a two-state problem.In this

case of ε = I − 1, individuals cannot change wealth in the worst loss state w1,−, decisions are

driven by risk aversion only, and partial insurance coverage is optimal:

Corollary 2.3 (ε = I − 1). Assume that ε = I − 1 > 0. If insurance is perceived as

actuarially fair (pI = 1), optimal insurance coverage is determined by α∗ = p
2−pL and results

in an average indemnity payment of α∗I = L/(2− p) < L. If insurance includes a subjective

loading (pI < 1), partial insurance is also optimal (α∗I < L).
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2.3 Overinsurance

As shown in the previous section, prudence is a motive for precautionary insurance at small

levels of contract complexity. In this section, we show that such precautionary insurance can

incentivize individuals to demand an expected indemnity payment that exceeds the actual

loss, αI > L. We refer to this case as overinsurance. The following Proposition shows that

overinsurance occurs if individuals are sufficiently prudent:

Proposition 2.1 (Overinsurance). If ε ∈ (0, I − 1), I > 1, and prudence is sufficiently large

such that

− ū′′′1
ū′′1

>
1

2α(I − 1)

(
1 +

1− pI

αε2p

(
−u′(E[w1])

ū′′1

))
(6)

in equilibrium, then individuals demand overinsurance (α∗I > L), where ū′′1 =
u′
1,−−u′

1,+

w1,−−w1,+
and

ū′′′1 =
u′
1,+−u′(E[w1])−(u′(E[w1])−u′

1,−)
(w1,−−w1,+)2

.

If contracts are perceived to include a proportional loading (pI < 1), the threshold for the

average degree of prudence − ū′′′
1
ū′′
1
on the right hand side of (6) is increasing with −u′(E[w1])

ū′′
1

. The

latter is decreasing with the slope of marginal utility (−u′′), and thus describes the inverse of

individuals’ risk aversion. Stronger risk aversion reduces the minimum degree of prudence to

result in overinsurance. The intuition is that more risk averse individuals exhibit a relatively

higher willingness-to-pay for insurance and, thus, more easily demand overinsurance in the

presence of complex contracts.

If insurance is perceived as actuarially fair, individuals already demand full insurance (αI = L)

in the case without contract complexity, i.e., for ε = 0. In this case, the threshold in (6) is

independent from risk aversion and individuals demand overinsurance for any small nonzero

level of contract complexity if they are sufficiently prudent:

Corollary 2.4. Assume that individuals expect insurance contracts to be actuarially fair

(pI = 1) and let ε ∈ (0, I − 1), I > 1. Then, individuals demand overinsurance if

− ū′′′1
ū′′1

>
1

2α(I − 1)
(7)

in equilibrium.

This result does not necessarily imply that, given individuals are sufficiently prudent, insur-

ance firms offer overinsurance in equilibrium. Instead, the result only provides a condition
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for individuals to demand overinsurance. If overinsurance is not offered by firms, individuals

demand the highest possible coverage up to the optimal level since marginal expected utility

is monotonically decreasing in insurance coverage (see the proof of Lemma 2.1).18

In practice, insurance companies usually follow the principle of indemnity, which states that

an indemnity payment should only replace actual losses occurred, putting the insured back

financially into his or her pre-loss situation. This is common practice in the U.S. and many Eu-

ropean countries (Pinsent Masons (2008)). It is, however, noteworthy that overinsurance may

still result from differences between insured’s and insurer’s assessment of the loss. New-for-

old-insurance (reinstatement) contracts or fire insurance contracts may feature an indemnity

that differs from exceeds the actual present value of what has been lost, since indemnity

payments are fixed before the loss occurs. For example, U.S. health insurers typically pay a

fixed rate per diem for hospital stays, regardless of the actual costs of treatments (Reinhardt

(2006)). Similarly, automobile insurance policies typically include the possibility to receive

a fixed indemnity payment $K instead of the insurer directly paying the actual repair costs.

Thus, if one is able to repair damages for less than $K or, more generally, if an individual’s

disutility from having a damaged car is smaller than receiving $K, the individual is - from

her own perspective - overinsured.

3 Transparency Costs, Equilibrium, and the Welfare Cost of

Illiteracy

Risk averse individuals prefer contracts without complexity, since

∂EU

∂ε
= α

p

2
(u′1+ − u′1−) < 0 (8)

for all α > 0. In this section, we analyze under which conditions contract complexity never-

theless exists in competitive equilibrium. We allow firms to undertake costly effort to reduce

contract complexity, e.g., by preparing additional explanatory materials (such as informa-

tion documents), offering additional advice through brokers or service centers, or assessing

18Thus, if firms offer contracts with coverage α ∈ C ⊆ R+ with max{C} < α∗, individuals purchase max{C},
where α∗ is the optimal coverage resulting from maximizing expected utility (1) for α ∈ R+.
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whether the contract’s terms and conditions can be simplified.19 We call the costs for effort

transparency costs.

As in the previous section, insurance demand is driven by individuals’ experienced level of

contract complexity, ε. We now split ε into two parts: contracts’ actual complexity ν (e.g.,

the (inverse of the) use of simple language, figures, and tables) and individuals’ financial

illiteracy β (e.g., unsophistication and cognitive abilities). Experienced contract complexity

is ε = βν, which reflects that the marginal impact of actual contract complexity on decision-

making increases with individuals’ level of illiteracy. Firms choose the level of actual contract

complexity ν ≥ 0, while individuals’ illiteracy β ≥ 0 is exogenous. If β = 0, individuals do not

experience any contract complexity, i.e., understand any contract regardless of its complexity

ν.

3.1 Contract Complexity in Competitive Equilibrium

We consider a market with free entry and homogeneous risk-neutral firms who offer insur-

ance contracts. Contracts generate transparency costs κ = κ(ν) ≥ 0 that depend on their

complexity ν with κ′ < 0 and κ′′ > 0. Firms pay −κ′ > 0 to marginally reduce the level of

complexity ν (and thus increasing transparency). Thus, the lower the complexity of contracts,

the more costly it is to offer them. For example, there may exist a benchmark complexity level

ν0 associated with small (possibly zero) transparency costs κ(ν0), e.g., by offering contracts

without explanatory material. Preparing additional explanatory material reduces complexity

to ν < ν0 but increases transparency costs to κ(ν) > κ(ν0). Individuals prefer smaller expe-

rienced complexity νβ < ν0β, however, in competitive equilibrium they need to compensate

firms for higher transparency costs. Therefore, equilibrium is characterized by the trade-off

between lower complexity and larger transparency costs (and prices). κ′′ > 0 implies that,

with smaller complexity, it becomes increasingly costly for firms to further reduce complexity.

Expected firm profit is given by

Γ(ν, I) = α(1− pI)− κ(ν). (9)

Firms compete over payout I and contract complexity ν, and offer co-insurance contracts with

indemnity payment $αI, α > 0, that make non-negative expected profit. Individuals choose

19New regulatory changes in the European Union make some of these measures mandatory (Hofmann et al.
(2018)).
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optimal insurance coverage α among the contracts offered, while facing subjective uncertainty

about the payout if they are financially illiterate (β > 0). Since we are interested primarily

in uncertainty as a channel for financial illiteracy - but not biases toward actuarial fairness

-, we now assume that individuals’ expectation about the indemnity payment is unbiased in

the sense that the payout they expect coincides with the actual payout.20

The equilibrium allocation maximizes individuals’ expected utility subject to a non-negative

expected profit constraint,

max
α≥0,ε≥0,I≥0

EU(α, ε, I) (10)

s.t. Γ(ε/β, I) ≥ 0. (11)

Since expected profit is strictly decreasing in payout I and increasing in complexity ε, firms

exactly break even in equilibrium, with Γ = α(1−pI)−κ = 0. Due to continuity, equilibrium

exists on every closed interval. It is unique if EU |Γ=0 is concave, i.e., if ∇2EU
∣∣
Γ=0

is negative

semi-definite.21

To simplify the illustration in the following, we will consider equilibrium in (ε, I)-space by

computing zero-profit curves and indifference curves given optimal insurance coverage α∗ for

each (ε, I)-pair, where α∗ maximizes individuals’ expected utility:

α∗ = argmax
α≥0

EU(α, ε, I) (12)

= argmax
α≥0

p
u(w0 − L+ α(I + ε− 1)) + u(w0 − L+ α(I − ε− 1))

2
+ (1− p)u(w0 − α).

The slope of the zero-profit curve in (ε, I) space is then given by

dI

dε

∣∣∣∣
Γ=0

=

∂α∗

∂ε (1− pI)− 1
βκ

′(ε/β)

pα∗ − ∂α∗

∂I (1− pI)
. (13)

Since κ′ < 0 and pI < 1 for Γ = 0 and κ > 0, the zero-profit curve is upward-sloping if

transparency costs κ are sufficiently small to result in a small price loading 1−pI at Γ = 0 (or

20Nonetheless, it is straightforward to extend our model to include a biased expectation, e.g., that firms pay
I but individuals expect it to be (1 + λ)I, on average.

21While it is not straightforward to proof that ∇2EU
∣∣
Γ=0

is negative semi-definite in general, we numerically

compute the eigenvalues of ∇2EU
∣∣
Γ=0

for the examples used below. For all relevant (α, ε)-pairs along (given
I to satisfy zero expected profits), we find that the eigenvalues are weakly below zero. Thus, in these cases,
equilibrium is unique.
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if insurance demand is sufficiently inelastic in payout I and sufficiently inelastic or increasing

in complexity ε). Then, a reduction in complexity ε (i.e., an increase in transparency) is offset

by a reduction in the payout I. If transparency costs κ are sufficiently convex, i.e., κ′′ > 0

sufficiently large, the zero-profit curve is also concave.

Indifference curves (ε, I)|V=V (ε,I) depict all pairs of experienced contract complexity ε = βν

(assuming that financial illiteracy β > 0) and expected indemnity I that result in the same

level of indirect utility

V (ε, I) = EU(α∗, ε, I), (14)

where α∗ is the optimal coverage for the respective (ε, I)-pair defined above. The marginal

rate of substitution between indemnity and complexity equals the slope of indifference curves,

dI

dε

∣∣∣∣
V=V (ε,I)

= −
∂V
∂ε
∂V
∂I

=
u′1,− − u′1,+
u′1,− + u′1,+

. (15)

Note that the first equality follows from the implicit function theorem and the second from the

envelope theorem. Due to risk aversion, indifference curves are upward sloping, dI
dε

∣∣
V=V (ε,I)

>

0. Thus, the utility-gain from higher expected indemnity I offsets the utility-loss from higher

complexity ε. The curvature of indifference curves is determined by

d2I

dε2

∣∣∣∣
V=V (ε,I)

=
2

(u′1,+ + u′1,−)
2

[
(−α∗) (u′′1,+u

′
1,− + u′′1,−u

′
1,+)︸ ︷︷ ︸

<0

−∂α∗

∂ε
(u′′1,+u

′
1,− − u′′1,−u

′
1,+)︸ ︷︷ ︸

=A

]
.

(16)

Thus, if ∂α∗

∂ε × A in (16) is sufficiently small or negative, indifference curves are convex. For

example, this is the case if individuals have constant absolute risk aversion, implying A = 0.

When individuals have increasing (decreasing) absolute risk aversion, it is A < 0 (A > 0) and

thus indifference curves are convex if ∂α∗

∂ε is either positive or negative and sufficiently small

in absolute value (either negative, or positive and sufficiently small). Convex indifference

curves reflect that with higher complexity it becomes increasingly more difficult to offset the

disutility from complexity by increasing payout.

Figure 5 depicts an illustrative example with constant absolute risk aversion. Below and on

the zero-profit curve, contracts make non-negative expected profit, and vice versa. The zero-

profit curve is upward sloping since higher contract complexity reduces transparency costs,

enabling firms to offer larger payout. It is concave since an increase in complexity reduces
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marginal transparency costs. Indifference curves are increasing with complexity since the

utility gain from a higher indemnity payment offsets the disutility from higher complexity. A

North-West shift of indifference curves reflects an increase in expected utility. In equilibrium,

indifference curve and zero-profit curve are tangential.
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(a) Low transparency costs.
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(b) High transparency costs.

Figure 5: Break-even line (straight), indifference curves (dotted and dashed), and equilibrium
contract (dot).
The zero-profit curve depicts all (ε, I) pairs of experienced complexity and expected indemnity with zero
expected profit given optimal coverage α∗, respectively. An indifference curve depicts all (ε, I) pairs that result
in the same level of indirect utility V . In this example, individuals have exponential utility with constant
absolute risk aversion ARA = 0.02 for an initial wealth w0 = 100, loss L = 50, and loss probability p = 0.3.
Transparency cost are κ(ν) = k(min(ν − ν0, 0))

2 with ν0 = 1/p and (a) k = 0.1 and (b) k = 0.3. k/p2 is the
cost to entirely remove contract complexity.

Equilibrium maximizes expected utility among contracts on the zero-profit curve, i.e.,

EU =
p

2

(
u

(
w0 − L+

α− κ

p
+ α(ε− 1)

)
+ u

(
w0 − L+

α− κ

p
− α(ε+ 1)

))
(17)

+ (1− p)u(w0 − α).

In equilibrium, experienced contract complexity thus satisfies the first-order condition

∂EU

∂ε
=

p

2

(
u′1,+

(
α− κ′

pβ

)
− u′1,−

(
α+

κ′

pβ

))
= 0 (18)

⇔ κ′ = −pβα
u′1,− − u′1,+
u′1,− + u′1,+

. (19)

The right-hand-side of Equation (19) is negative if α > 0 and decreasing with individuals’ risk

aversion and financial illiteracy. More risk averse and more financially illiterate individuals

demand a smaller level of complexity in equilibrium (since κ′′ > 0). An interior solution

(νβ > 0) exists only if β > 0 and transparency costs are decreasing with complexity (and thus
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increasing with transparency): κ′ < 0. Otherwise, ∂EU
∂ε < 0 for all ε, α > 0 and thus ε = 0

and ν = 0 are optimal.

Assume that β > 0 and κ′ < 0. If an interior solution for ε exists, it is an expected utility

maximum since

∂2EU

∂ε2
=

p

2

(
u′′1,+

(
α− κ′

pβ

)2

+ u′′1,−

(
α+

κ′

pβ

)2)
− κ′′

β2
E[u′1] < 0. (20)

For example, consider κ to be quadratic with a cost-minimal level of complexity ν0, such that

κ = k(ν − ν0)
2.22 Then, the equilibrium level of actual contract complexity satisfies

ν = ν0 − pβα
u′1,− − u′1,+

2k(u′1,− + u′1,+)
(21)

and is positive if (a) transparency costs k (per unit deviation from ν0) or (b) cost-minimizing

contract complexity ν0 are sufficiently large, and (c) the loss probability p and financial

illiteracy β are sufficiently small, given positive insurance coverage α > 0. Large marginal

costs for deviating from the cost-minimal contract complexity ν0 result in a larger reduction in

the expected indemnity payment and, thus, increase the zero-profit curve’s slope (see Figure

5). The smaller the coverage α, loss probability p, and financial illiteracy β, the smaller is the

impact of payout uncertainty on expected utility and the larger is the reduction in indemnity

I upon a decrease in ε along the zero-profit curve (i.e., the steeper are zero-profit curves).

Then, individuals are willing to accept a larger level of actual contract complexity in exchange

for a higher payout in equilibrium.

3.2 Welfare and the Financial Illiteracy Premium

We use our equilibrium definition to estimate the welfare cost of financial illiteracy. Gener-

ally, one can think of two types of welfare costs. On the one hand, if only one (atomistic)

individual increases its financial literacy (i.e., lowers β), she can improve her utility without

changing the equilibrium allocation.23 On the other hand, a policy intervention that increases

a population’s level of literacy will change the equilibrium allocation. In the following, we

22We only consider ν ≤ ν0 in order to have transparency costs decreasing with complexity.

23For example, upon reducing the illiteracy to β = 0 she would maximize expected utility

EU(α) =pu

(
w0 − L+

α− κ

p
− α

)
+ (1− p)u(w0 − α), (22)
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focus on the latter notion of welfare since it is arguably the more policy-relevant one. Thus,

to evaluate the effect of (a population’s) financial illiteracy on welfare it is important to also

take its effect on equilibrium insurance demand into account.

We compare different levels of β, reflecting different levels of financial literacy. In the most

extreme cases, if β = 1, contract complexity is fully passed on to individuals, while individuals

with β = 0 are perfectly financially literate and are not affected by contract complexity at all.

We assume that a unique transparency cost minimum ν0 exists, κ′(ν0) = 0 and κ′′(ν0) > 0.

For simplicity and without loss of generality, we assume that κ(ν0) = 0. For example, ν0

might correspond to a benchmark contract that is costlessly available to firms.

Since indifference curves in (ε, I)-space depend on experienced contract complexity ε = βν,

we can fix indifference curves and vary zero-profit curves with changes in β: a reduction

in β increases the level of actual complexity ν = ε/β that is sufficient for firms to break

even for a given ε. Then, transparency costs decrease and firms can raise the break-even

indemnity payment I. In Figure 6, this effect is reflected by a steeper zero-profit curve for

small β. However, since the zero-profit curve decreases with financial illiteracy β for low level

of experienced complexity ε, individuals attain a higher expected utility in equilibrium with

low illiteracy β (point B) than with large β (point A). In the case of quadratic transparency

costs ν = k(ν − ν0)
2 as in Figure 6, if ε > βν0, the implied actual complexity is larger than

the cost-minimal complexity, ν = ε/β > ν0. Therefore, transparency costs are increasing

with contract complexity if ε is sufficiently large, resulting in a decreasing zero-profit curve

for large ε in Figure 6.

In the following, we focus on the welfare loss that results from the difference in equilibrium

utility between perfectly financially literate (β = 0) and illiterate (β = 1) individuals. If

β = 0, individuals do not experience disutility from actual contract complexity and thus, in

equilibrium, firms offer contracts with minimal transparency cost, ν∗ = ν0, and actuarially

fair payout I∗ = 1/p (since we assume κ(ν0) = 0). Thus, for β = 0 the zero-profit curve in

given that contracts break even. The optimal insurance coverage is α∗ = pL + κ, which equalizes wealth
w1 = w2 = w0 − pL − κ. The welfare cost of not being perfectly financially literate but instead having
β = h > 0 can be measured by this individual’s willingness to pay c to reduce β to zero, namely

u(w0 − pL− κ− c) = EU∗|β=h . (23)

Since contracts break even in equilibrium, expected wealth equals w0−pL−κ regardless of the level of coverage
and financial literacy. Therefore, c is simply the risk premium for equilibrium insurance coverage with β = h.
An important assumption of this welfare notion is that the individual is aware of her financial illiteracy.
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Figure 6: Break-even lines (straight), indifference curves (dotted and dashed), and optimal
contracts (dots). Point A corresponds to equilibrium with β = 1, point B to equilibrium with
β = 0.5.
Zero-profit curves depict all (ε, I) pairs of experienced complexity and expected indemnity with zero expected
profit given optimal coverage α∗, respectively. Indifference curves depict all (ε, I) pairs that result in the same
level of indirect utility V . In this example, individuals maximize exponential utility with constant absolute risk
aversion ARA = 0.02 for an initial wealth w0 = 100, loss L = 50, and loss probability p = 0.3. Transparency
cost are κ(ν) = k(ν − ν0)

2 with ν0 = 1/p corresponding to benchmark contracts with minimal transparency
costs and k = 0.2. k/p2 is the cost to entirely remove contract complexity.

(ε, I)-space is flat with I = 1/p and individuals maximize

EU |β=0 = pu(w0 − L+ α(I∗ − 1)) + (1− p)u(w0 − α) (24)

over coverage α. It is well-known that the solution to this program is full coverage, α∗I∗ = L

(e.g., see Doherty (1975)), such that expected utility in equilibrium is EU∗|β=0 = u(w0−pL).

To compare welfare with and without financial illiteracy, we translate the welfare-loss from

financial illiteracy into monetary costs. For this purpose, we define the financial illiteracy

premium C as

u(w0 − pL− C) = EU∗|β=1 , (25)

where EU∗|β=1 is the expected utility in equilibrium with financially illiterate individuals, β =

1. C is a social planner’s maximum willingness-to-pay to completely remove financial illiteracy,

i.e., the welfare cost of financial illiteracy. It reflects the maximum cost that policymakers

should be willing to invest into educating consumers.
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It is straightforward to show that C > 0 if the equilibrium with β = 1 entails a non-negative

price loading (pI∗ ≤ 1) and a positive but small level of complexity such that w0−L+α∗(I∗−

ε∗ − 1) > 0. In this case, strict concavity of an individual’s utility function implies that

EU |β=0 = u(w0 − pL) = u (p(w0 − L+ α∗(I∗ − 1)) + (1− p)(w0 − α∗) + α∗(1− pI∗)) (26)

> pu(w0 − L+ α∗(I∗ − 1)) + (1− p)u(w0 − α∗) (27)

> p
u(w0 − L+ α∗(I∗ + ε∗ − 1)) + u(w0 − L+ α∗(I∗ − ε∗ − 1))

2
+ (1− p)u(w0 − α∗) (28)

= EU∗|β=1 , (29)

and, thus, C > 0.

In Figure 7, we examine the sensitivity of C toward different primitives of the model. We

rely on an exemplary baseline calibration: individuals have initial wealth w0 = 100, maximize

exponential utility with constant absolute risk aversion ARA = 0.02 and face a loss of L = 50

that occurs with probability p = 0.3. The implied coefficient of relative risk aversion is

RRA = 1.7 for expected uninsured wealth, which is consistent with the degree of risk aversion

revealed by subjects in Ebert and Wiesen (2014)’s experiment during tasks that aim to elicit

their degree of prudence. Firms face quadratic transparency costs κ(ν) = k(ν − ν0)
2, such

that offering a contract without complexity costs κ(0) = kν20 . In the baseline calibration we

set k = 0.3 and ν0 = 1/p, such that κ(0) = 1/p = 10/3.

The illiteracy premium C can be relatively large compared to the expected loss pL: for

reasonable calibrations, the illiteracy premium increases to up to 20% of the expected loss

(i.e., the actuarially fair premium), which seems substantial. On the flip side, the illiteracy

premium vanishes if (a) transparency costs are small or (b+c) individuals exhibit low levels

of risk aversion.

In Section 3.1 we show that financially illiterate individuals accept a high level of contract

complexity in equilibrium if marginal transparency costs κ′ are large (in absolute terms). If

marginal (absolute) transparency costs are small, firms are able to reduce complexity at a low

cost. Due to competition among firms, individuals experience small complexity and purchase

close-to-full insurance contracts at close-to-actuarially fair indemnity in equilibrium. At the

limit, equilibrium with perfectly financially literate individuals is reached. Therefore, the

welfare cost of financial illiteracy is smaller if it is less costly for firms to reduce complexity,

as Figure 7 (a) shows.
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(a) Illiteracy premium (C) and cost to offer contracts
without complexity (k/p2).
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(b) Illiteracy premium C and absolute risk aversion
ARA (which equals prudence) with exponential util-
ity.
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(c) Illiteracy premium C and absolute risk aversion
with quadratic utility (no prudence) at expected
uninsured wealth w0 − pL.

Figure 7: Sensitivity of financial illiteracy premium towards changes in (a) trans-
parency costs, (b) risk aversion and prudence, and (c) risk aversion without prudence.
In Figures (a) individuals maximize exponential utility with constant absolute risk aversion ARA = 0.02 which
also equals the coefficient of absolute prudence, in (b) individuals maximize exponential utility with varying
coefficient of absolute risk aversion ARA, in (c) individuals maximize quadratic utility u(w) = aw − γw2 for
a

2w0
> γ such that u′ > 0 for all attainable values. Initial wealth is w0 = 100, the loss is L = 50, and the loss

probability is p = 0.3. Transparency costs are given by κ(ν) = k(ν − ν0)
2 with ν0 = 1/p such that k/p2 is the

cost to entirely remove contract complexity. In Figure (a), we vary k, and it is k = 0.3 in Figures (b), and (c).
Note that ARA = 0.02 corresponds to RRA = 1.7 at wealth w0 − pL = 85.

Figures 7 (b) and (c) illustrate that the illiteracy premium is increasing with risk aversion.

The less risk averse individuals are, the smaller is the disutility from contract complexity and,

thus, the less elastic is insurance demand with respect to complexity but more elastic it is with

respect to payout. Therefore, financially illiterate but relatively less risk averse individuals

accept a high level of complexity in exchange for a large indemnity in equilibrium, while the
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difference in welfare to financially literate individuals is small due to the small disutility from

complexity.24

Figures 7 (b) and (c) differ with respect to preferences: we use exponential utility (i.e., con-

stant absolute risk aversion) in Figure 7 (b) and quadratic utility in Figure 7 (c). Exponential

utility implies that we cannot alter risk aversion and prudence separately: the coefficient of

absolute risk aversion equals the coefficient of absolute prudence (Eeckhoudt and Schlesinger

(1994)). Thus, in Figure 7 (b) it is challenging to disentangle the effects of prudence and risk

aversion. To overcome this drawback, we compare the illiteracy premium with exponential

utility to that with quadratic utility in Figure 7 (c) where u′′′(·) = 0, i.e., individuals are not

prudent for any level of absolute risk aversion ARA. We find that changes in risk aversion

have a similar effect for quadratic utility in Figure 7 (c) as for exponential utility in Figure 7

(b). Therefore, we conclude that risk aversion and not prudence drives the illiteracy premium

C. Intuitively, larger risk aversion raises the disutility from contract complexity. This effect

dominates the impact of changes in insurance demand due to prudence on the elasticity of

insurance demand.

3.3 Empirical predictions and policy implications

Our analysis on insurance demand predicts that very prudent individuals react to an increase

in contract complexity or financial illiteracy by raising insurance take-up. This prediction

has been partially tested by Harrison et al. (2020). In a large-scale experiment, the authors

find that welfare-reducing mistakes of financially illiterate consumers typically manifest in too

large – and not too small – insurance take-up. This is consistent with our model’s prediction

that financial illiteracy may result in overinsurance.25 Motivated by a strong interaction in

our model, it would be interesting to further investigate the role of prudence and risk aversion

on insurance decisions of financially illiterate consumers.

Moreover, our model predicts that risk aversion is an important driver for the equilibrium

level of contract complexity. The more risk averse individuals are, the larger is their willing-

ness to pay a larger insurance premium to reduce contract complexity. Similarly, a higher

probability of loss increases individuals’ exposure to contract complexity, and thus increases

24In the most extreme case, risk neutral individuals have no disutility from complexity.

25Interestingly, this result implies that financial illiteracy does not necessarily result in “underinsurance”, as
is suggested be.g., by Schanz and Wang (2014).
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their willingness-to-pay. As a result, our model predicts a relatively smaller equilibrium level

of contract complexity and larger insurance premiums in insurance markets with relatively

more risk averse individuals and with a relatively larger probability of insured loss events.

Increasing consumers’ understanding of insurance (contracts) is an important challenge and

high priority objective for insurance regulators worldwide. Generally, one can mainly think

of two ways to reduce welfare costs of financial illiteracy: 1) Transparency requirements for

insurance firms that mandate a maximum level of contract complexity, and 2) increasing finan-

cial literacy of individuals (e.g., via financial education). In recent years, policymakers have

undertaken substantial effort in pursuing the first way by imposing regulatory transparency

standards.26 For example, the National Association of Insurance Commissioners (NAIC)

founded the Transparency and Readability of Consumer Information (C) Working Group in

2010 in order to develop best practices for increasing transparency in the U.S. insurance mar-

ket. Recently, the European Union mandated the creation of Insurance Product Information

Documents (IPIDs), which overview key features of insurance contracts (e.g., claims han-

dling, and covered losses) in a standardized presentation format.27 Yet, such transparency

regulation requires insurers to implement costly measures to increase contract transparency

(German Insurance Association (GDV) (2016)). Insurers are likely to recover these additional

costs from individuals via increasing insurance prices, as in our model.

In our model, complexity exists in equilibrium since there is a trade-off for individuals between

facing lower complexity and accepting higher prices. As a result from perfect competition

in the model, any deviation from the equilibrium level of contract complexity is welfare-

decreasing, since the utility from smaller complexity does not offset the disutility from higher

prices, and vice versa. Hence, binding transparency regulation that mandates firms to re-

duce contract complexity to less-than-equilibrium levels is welfare-decreasing, particularly if

marginal transparency cost are large. In contrast, an increase in financial literacy, e.g., via

financial education, unambiguously raises welfare as long as the associated cost of completely

removing illiteracy does not exceed the financial illiteracy premium, which amounts to 5-20%

of the expected loss in our exemplary model calibration.

26Regulators have also undertaken measures to increase financial literacy; e.g., see EIOPA’s ”Report on
Financial Literacy and Education Initiatives by Competent Authorities” (2011), available at https://eiopa.
europa.eu/consumer-protection/financial-literacy-and-education.

27See Article 20 of the Insurance Distribution Directive (EU Directive 2016/97) and EIOPA’s ”Final Report
on Consultation Paper no. 16/007 on draft Implementing Technical Standards concerning a standardized
presentation format for the Insurance Product Information Document of the Insurance Distribution Directive”
(2017) available at https://eiopa.europa.eu/Publications/Reports/ as well as Hofmann et al. (2018).
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Nevertheless, one should not interpret our results as a pledge against transparency regulation.

Instead, our analysis highlights that transparency regulation is not welfare-increasing in our

frictionless world, in which insurers compete over the complexity of products and (financially

illiterate) individuals costlessly choose among the products offered. Nonetheless, market fric-

tions like search costs, asymmetric information, an oligopolistic market structure of firms, or

behavioral biases of individuals (that, e.g., let them favor products of well-known firms despite

higher complexity) may still provide a rationale for transparency regulation.28 Therefore, our

model provides a benchmark that may be treated as a starting point for further exploration

of equilibria and transparency regulation with additional behavioral biases and different mar-

ket environments. Moreover, the insight that transparency regulation is not unambiguously

welfare-increasing should motivate policymakers to define more precisely the specific market

frictions and behavioral biases that regulation targets.

4 Conclusion

We examine insurance markets with individuals that are uncertain about the actual indem-

nity payout of insurance contracts. We argue that such uncertainty is a reasonable bias of

financially illiterate (but otherwise rational) individuals that are confronted with complex

insurance contracts. For example, individuals may be uncertain about the types of losses

that are covered since these are specified in complex and complicated language. The more

complex insurance contracts and the less financially literate individuals, the more uncertain

are individuals about indemnity payouts in our model.

Adopting this model of contract complexity, we show that contract complexity has a profound

impact on insurance market outcomes. In particular, insurance demand strongly interacts with

second- and third-order risk preferences (namely, risk aversion and prudence), which might

both increase or decrease demand for insurance. We identify a threshold for prudence such

that optimal insurance coverage increases with contract complexity if prudence exceeds this

threshold, and vice versa. Such an increase in coverage due to increases in risk is commonly

known as precautionary insurance.

28For example, according to the National Association of Insurance Commissioners (NAIC) (2017), the largest
five insurers had a joint market share of more than 30% of the U.S. and Canadian property & casualty insurance
market in 2017. In the total private passenger auto insurance market, four insurers had a joint market share
of more than 50% in 2017.
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Our findings reveal important insights about the impact of contract complexity and financial

literacy on insurance markets as well as decision-making under risk, more generally. Typically,

underinsurance (relative to optimal insurance coverage if individuals were perfectly informed)

is interpreted as a sign for a low level of financial literacy (e.g., Quantum Market Research for

the Insurance Council of Australia (2013), Fairer Finance (2018)). However, our results imply

that financial illiteracy might as well result in excessive demand for insurance by prudent

individuals, who desire to raise the (subjectively) uncertain payout in case of a loss. This

finding is consistent with recent experimental evidence by Harrison et al. (2020).

We endogenize contract complexity in competitive equilibrium by assuming that firms can

exert costly effort to reduce complexity (e.g., by preparing explanatory material). Based on

the equilibrium analysis, we propose a measure for the welfare cost of financial illiteracy, the

financial illiteracy premium, which reflects the maximum willingness-to-pay to gain perfect

understanding of insurance contracts. For a reasonable calibration, the illiteracy premium

amounts to 5-20% of the expected loss and is mainly driven by risk aversion.

Our analysis provides benchmark results for the impact of regulatory actions that tackle

welfare costs of limited financial literacy, particularly minimum transparency standards (for

firms) vs. financial education (of consumers). Financial education unambiguously increases

consumer welfare in our model if its cost does not exceed the financial illiteracy premium.

However, if firms compete over contract complexity and markets are perfectly competitive and

frictionless (as in our model), transparency requirements that bind in equilibrium lead to an

overinvestment in transparency. Thus, financial illiteracy alone (if it solely results in uncer-

tainty as in our model) is not a sufficient reason for transparency regulation in this benchmark

case. Since markets are often not frictionless and consumers exhibit various behavioral bi-

ases in practice, transparency regulation may still increase welfare in practice. However, our

benchmark results urge policymakers to carefully evaluate the specific frictions and biases

they aim to address.

The results and the model framework of this study are not limited to the insurance market

or the assumption of rational individuals. On the contrary, it can also be applied to decisions

about optimal portfolio investments or optimal savings. Furthermore, it is straightforward to

include additional behavioral phenomena such as overconfidence or ambiguity aversion.

27



References

Anagol, S. and Kim, H. H. (2012). The impact of shrouded fees: Evidence from a natural

experiment in the indian mutual funds market. American Economic Review, 102(1):576–93.

Bateman, H., Eckert, C., Iskhakov, F., Louviere, J., Satchell, S., and Thorp, S. (2016).

Individual capability and effort in retirement benefit choice. Journal of Risk and Insurance,

85(2):483–512.

Berchick, E. R., Hood, E., and Barnett, J. C. (2018). Health insurance coverage in the united

states: 2017. Current population reports. Washington DC: US Government Printing Office.

Briys, E., Schlesinger, H., and v. d. Schulenburg, M. G. (1991). Reliability of risk management:

Market structure, self-insurance and self-protection reconsidered. Geneva Papers on Risk

and Insurance Theory, 16:45–58.

Campbell, J. (2016). Restoring rational choice: The challenge of consumer financial regulation.

American Economic Review: Papers and Proceedings, 106(5):1–30.

Carlin, B. (2009). Strategic price complexity in retail financial markets. Journal of Financial

Economics, 91:278–287.

Cogan, J. A. (2010). Readability, contracts of recurring use, and the problem of ex post

judicial governance of health insurance policies. University of Connecticut School of Law

Faculty Articles and Papers.
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Appendix

A Proofs

Proof of Lemma 2.1

Proof.

(1) Assume that individuals are not prudent, i.e. u′′′(·) ≤ 0. Let I > 1 and ε ≥ 0. The FOC

for optimal insurance coverage is

∂EU

∂α
=

p

2

(
u′1,+(I + ε− 1) + u′1,−(I − ε− 1)

)
− (1− p)u′2

!
= 0. (30)

Accordingly, we arrive at the following second order condition:

d2EU

dα2
=

p

2

(
u′′1,+(I + ε− 1)2 + u′′1,−(I − ε− 1)2

)
+ (1− p)u′′2 < 0, (31)

which is negative as u′′ < 0, and thus the solution α∗ to (30) is unique. Optimal insurance

coverage is decreasing with ε if ∂EU
∂α is decreasing with ε. This is the case if

d2EU

dαdε
=

p

2

(
u′′1,+α(I + ε− 1)− u′′1,−α(I − ε− 1) + u′1,+ − u′1,−

)
< 0, (32)

where u′1,+ − u′1,− < 0 due to risk aversion.

In the following, we do a case by case analysis depending on ε. Let ε < I − 1. Then, it is

0 < I − ε− 1 < I + ε− 1 and thus for α > 029

u′′1,+α(I + ε− 1)− u′′1,−α(I − ε− 1) < 0 (33)

⇔ I + ε− 1

I − ε− 1
>

u′′1,−
u′′1,+

. (34)

u′′′(·) ≤ 0 implies that u′′1,− ≥ u′′1,+ ⇔ u′′
1,−

u′′
1,+

≤ 1. Since the LHS of (34) is larger than

unity, (34) and thus (32) holds.

29From the FOC follows that α > 0 is optimal if I − 1 > 1−p
p

u′(w0)
u′(w0−L)

, which we assume in the following.
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Let ε ≥ I − 1. Then, it is I − ε− 1 ≤ 0 < I + ε− 1 and thus −u′′1,−α(I − ε− 1) ≤ 0 and

u′′1,+α(I + ε − 1) < 0, implying (34) and thus (32). Therefore, (32) holds if u′′′ ≤ 0 and

thus optimal insurance coverage is decreasing with contract complexity ε.

(2) Assume that ε < I − 1 and let P(ϑ̃ = ε) = P(ϑ̃ = −ε) = 1/2. The proof aims at finding a

boundary for the level of prudence such that (32) > 0. This can be rewritten as

u′′1,+α(I + ε− 1)− u′′1,−α(I − ε− 1) > −
(
u′1,+ − u′1,−

)
(35)

⇔ α(I − 1)
(
u′′1,+ − u′′1,−

)
+ αε

(
u′′1,+ + u′′1,−

)
> −

(
u′1,+ − u′1,−

)
(36)

⇔ α(I − 1)
u′′1,+ − u′′1,−
u′1,− − u′1,+

+ αε
u′′1,+ + u′′1,−
u′1,− − u′1,+

> 1 (37)

⇔ −
(
u′′1,− − u′′1,+

)
/ (w1,− − w1,+)(

u′1,− − u′1,+

)
/ (w1,− − w1,+)

>
1− αε

u′′
1,++u′′

1,−
u′
1,−−u′

1,+

α(I − 1)
(38)

Assume that ε ≥ I − 1. The proof is analogous to above.

Proof of Corollary 2.1:

Proof. Let ε < I − 1 and u′′′ > 0. Condition (4) in Lemma 2.1 is equivalent to

ū′′′1 >
1

2αε

u′1,− − u′1,+ − αε(u′′1,+ + u′′1,−)

α(I − 1)
, (39)

for which the RHS is smaller than
(−u′′

1,−)

α(I−1) − 1
2αε

2εu′′
1,−

(I−1) since u′′′ > 0. Thus, − ū′′′
1

u′′
1,−

> 2
α(I−1) is

sufficient to satisfy (4).
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Proof of Corollary 2.2:

Proof. We disentangle the indemnity payment from the insurance premium, letting αI be the

indemnity at coverage α at price P . Fix I > 1 and let ε < I − 1. Individuals derive utility

EU = pE[u(w0 − L− P + α(I + ϑ̃))] + (1− p)u(w0 − P ) from buying coverage α at price P .

The marginal rate of substitution along an indifference curve in α− P space is given by

dP

dα

∣∣∣∣
EU=const

=
pE[u′1(I + ϑ̃)]

pE[u′1] + (1− p)u′2
. (40)

Analogously to Rothschild and Stiglitz (1971), the impact of an increase in risk of ϑ̃ (i.e., an

increase in ε) on E[u′1] and E[u′1(I + ϑ̃)] depends on whether u′1 and u′1(I + ϑ̃) are convex or

concave in ϑ̃. If both are strictly convex in ϑ̃, an increase in risk leads to an increase in E[u′1]

and E[u′1(I + ϑ̃)]. u′1 is strictly convex in ϑ̃ if u′′′ > 0 because
∂2u′

1

∂ϑ̃2
= α2u′′′1 . u′1(I + ϑ̃) is

strictly convex in ϑ̃ if, and only if,

∂2u′1(I + ϑ̃)

dϑ̃2
= u′′′1 (I + ϑ̃)α2 + 2u′′1α > 0, (41)

which is equivalent to −u′′′
1
u′′
1

> 2
(I+ϑ̃)α

since I + ϑ̃ ≥ I − ε > I − (I − 1) > 0. Hence, if

individuals are sufficiently prudent such that −u′′′
1
u′′
1

> 2
(I−ε)α ≥ 2

(I+ϑ̃)α
in equilibrium, an

increase in contract complexity ε leads to an increase in E[u′1(I + ϑ̃)]. Because I > 1, upon

an increase in risk of ϑ̃, the increase in the numerator of (40), and particularly of E[u′1]I, is

at least as large as the increase in the denominator of E[u′1]. Therefore, for any contract α

and price P the marginal rate of substitution is increasing with ε.

Proof of Corollary 2.3:

Proof. Assume that ε = I − 1. Then, it is w1,− = w0 − L, w1,+ = w0 − L + α(I + ε − 1) =

w0 − L+ 2α(I − 1), and w2 = w0 − α. Optimal insurance coverage satisfies

∂EU

∂α
=

p

2
u′1,+2(I − 1)− (1− p)u′2 = 0 (42)

⇔
u′1,+
u′2

=

1−p
p

I − 1
. (43)

If insurance is (subjectively) actuarially fair, it is pI = 1, implying that I − 1 = 1−p
p and,

thus, u′1,+ = u′2, which is equivalent to −L + 2α1−p
p = −α ⇔ α2−p

p = L ⇔ α = L p
2−p and

results in an expected indemnity payment αI = L/(2− p).
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If insurance includes a (subjective) premium loading, it is pI < 1, implying that I − 1 < 1−p
p

and, thus,
u′
1,+

u′
2

> 1 or equivalently w1,+ < w2 ⇔ −L+ 2α(I − 1) < −α ⇔ α(1 + 2(I − 1)) =

α(2I − 1) < L ⇔ α < L
2I−1 < L

I , which implies partial insurance.

Proof of Proposition 2.1

Proof. Overinsurance occurs if wealth in the no-loss state is smaller than expected wealth in

the loss state, w2 < E[w1], or, equivalently, u
′(w2) > u′(E[w1]). Let ε < I − 1. Using the

first-order condition for insurance demand, overinsurance is optimal if

u′(E[w1]) <
p

1− p
E[u′(w1)](I − 1) +

p

1− p

ε

2

(
u′1,+ − u′1,−

)
(44)

⇔ − p

1− p

ε

2

(
u′1,+ − u′1,−

)
<

p(I − 1)

2(1− p)

[
u′1,+ − u′(E[w1])−

(
u′(E[w1])− u′1,−

)
+ 2u′(E[w1])

]
− u′(E[w1]). (45)

Define by ū′′ =
u′
1,+−u′

1,−
2αε < 0 the first order difference quotient of u′, reflecting the average

slope of u′(w) for w ∈ (w1,−, w1,+), and by ū′′′ =
u′
1,+−u′(E[w1])−(u′(E[w1])−u′

1,−)
4α2ε2

the second

order difference quotient of u′, reflecting the average curvature of u′(w) for w ∈ (w1,−, w1,+)

in equilibrium. Then, overinsurance is optimal if

− p

1− p
ε2αū′′ <

2α2ε2p

(1− p)
(I − 1)ū′′′ − 1− pI

1− p
u′(E[w1]) (46)

⇔ p

1− p
ε2α <

2α2ε2p

(1− p)
(I − 1)

(
− ū′′′

ū′′

)
− 1− pI

1− p

(
−u′(E[w1])

ū′′

)
(47)

⇔ pε2α+ (1− pI)

(
−u′(E[w1])

ū′′

)
< 2α2ε2p(I − 1)

(
− ū′′′

ū′′

)
(48)

⇔ 1

2α(I − 1)
+

(1− pI)

2α2ε2p(I − 1)

(
−u′(E[w1])

ū′′

)
< − ū′′′

ū′′
, (49)

⇔ 1

2α(I − 1)

(
1 +

1− pI

αε2p

(
−u′(E[w1])

ū′′

))
< − ū′′′

ū′′
, (50)

where − ū′′′

ū′′ approximates the degree of prudence and −u′(E[w1])
ū′′ the inverse of the degree of

risk aversion.
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Proof of Corollary 2.4

Proof. The result is a direct implication of Proposition 2.1.

B Insurance demand in the presence of contract complexity,

nonperformance and background risk

In this section, we highlight similarities and differences between our model of contract com-

plexity and well-known models of insurance demand in the presence of background and con-

tract nonperformance risk. We consider co-insurance contracts that insure (part of) a loss

L > 0 that occurs with probability p ∈ (0, 1). Insuring proportion s ≥ 0 of the loss requires

premium sP and pays indemnity sD̃ conditional on loss occurrence, where P > 0 and D̃

is a (potentially degenerate) nonnegative random variable. We scale payouts by premiums,

denoting by Ĩ = D̃/P the (potentially random) payout per unit-premium. A family of co-

insurance contracts is the set of contracts with the same unit-payout distribution (I, π), where

I = (I1, ..., Im), Ii ∈ [0,∞), is the allocation of contract payouts per unit premium in m ∈ N

payout states and π ∈ [0, 1]m,
∑

i πi = 1, are the probability weights of payouts I conditional

on loss occurrence. Contracts do not pay out if the loss does not occur. Following previous

literature, we focus on a binary payout structure (m = 2) with I = (I+, I−) being the relevant

payouts.

Contracts with complexity have payout allocations

Icomplexity = {(I + ε, I − ε) : I > 1, ε ≥ 0} , (51)

with π = (12 ,
1
2). Payout is linear in complexity ε. In contrast, Doherty and Schlesinger (1990)

characterize contracts with nonperformance risk by premium P = pL(q + (1 − q)τ)m and

payout sL upon loss occurrence and solvency, and salvage value sτL upon loss occurrence

and insolvency of the insurer. The payout distribution is then given by π = (q, 1 − q) and

payouts (scaled by total premium payment and with premium loading m ≥ 0)

Inonperformance =

{
1

p(q + (1− q)τ)m
(1, τ) : m ≥ 0; τ, q ∈ [0, 1]

}
. (52)
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The expected payout (given a loss) per unit premium is I for complex contracts and

q + (1− q)τ

p(q + (1− q)τ)m
=

1

pm
(53)

for contracts with nonperformance risk. Actuarially fairly priced contracts feature expected

unit payout pI = 1 and m = 1, which is independent of complexity ε and nonperformance

risk τ and q.

Contract complexity and nonperformance risk result in different payout allocations. While

contract payout is linear in the level of complexity ε, an increase in nonperformance risk (by a

reduction in τ) disproportionally subsidizes wealth in the solvency state via a convex increase

in I+ (upon insurer solvency) and concave decrease in I− (upon insurer insolvency). The

reason is that nonperformance risk reduces the salvage value in the insolvency state and the

unit premium P = pL(q+ τ(1− q))m in all states at the same time. As a result, the decrease

in P partially offsets the payout reduction in the insolvency state. Figure 8 (a) illustrates

that payout variability I+ − I− is convexly increasing with a reduction in the salvage value

τL, while it is linearly increasing in complexity ε in Figure 8 (b). As a result, the following

proposition shows that the set of nonperformance contract families is disjunct from the set of

complex contract families with ε > 0.
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(a) Nonperformance risk.
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(b) Complexity risk.

Figure 8: Comparison of contract payouts upon changes in nonperformance and complexity
risk.
Figures depict the dollar payout per 1$ total premium payment of insurance contracts for loss probability
p = 0.2. (a) We assume a nonperformance probability of q = 0.1.

Proposition B.1. Let ε > 0. Then, no contract family with nonperformance risk τ ≥ 0 and

non-negative premium (m ≥ 0) provides the same payout distribution as the family of complex

contracts with ε.
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Proof. For the expected payout to coincide, it must hold that I = 1
pm . For payouts in both

states to coincide it must hold that

1

pm
− ε =

1

p(q + (1− q)τ)m
(54)

1

pm
+ ε =

τ

p(q + (1− q)τ)m
(55)

⇒ 2ε =
τ − 1

p(q + (1− q)τ)m
, (56)

which is not satisfied if ε,m ≥ 0 and τ ≤ 1.

In a different set up, Fei and Schlesinger (2008) study insurance demand in the presence of

additive background risk in the loss state that is exogenous to contracts. Exogenous, additive

background risk does not depend on insurance coverage and, thus, also results in a different

payout allocation than contract complexity in our model.

C General complexity risk distribution

The following proposition generalizes Lemma 2.1 by deriving a threshold for prudence above

which a mean-preserving increase in complexity risk leads to an increase in optimal insurance

coverage for an arbitrary (but bounded) complexity risk distribution.

Proposition C.1. Let ϑ̃ ∼ F with support Ω ⊆ [−g, g], where g > 0, and E[ϑ̃] = 0. Assume

that contracts pay I + ϑ̃ per unit premium and let g < I − 1. Consider, a (small) mean-

preserving increase in the risk of ϑ̃ such that the support does not exceed [−g, g]. Then,

optimal insurance coverage is increasing with this increase in risk if

−u′′′

u′′
>

2

α(I − g − 1)
(57)

in a neighborhood of optimal insurance coverage.

Proof. Following Rothschild and Stiglitz (1971), a mean-preserving increase in the risk of ϑ̃

increases optimal insurance coverage α if

Uα = pu′1(I + ϑ̃− 1)− (1− p)u′2 (58)
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is strictly convex in ϑ̃, where u′1 = u(w0 −L+α(I + ϑ̃− 1)) and u′2 = u′(w0 −α). This is the

case if

∂2Uα

∂ϑ̃2
= 2pαu′′1 + pα2u′′′1 (I + ϑ̃− 1) > 0 (59)

⇔ − u′′′1
u′′1

>
2

α(I + ϑ̃− 1)
, (60)

which holds if −u′′′
1
u′′
1
> 2

α(I−g−1) ≥
2

α(I+ϑ̃−1)
in a neighborhood of optimal insurance coverage.
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