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A Loss Sharing Rules in Practice

We investigate the Default Rules of LCH Limited Rates Service, one of the largest clearinghouses
worldwide, as of September 2022 (available at https://www.Ich.com /resources /rulebooks /lch-limited).
Using the terminology of default rules (we report the relevant excerpts of the rule book below), a
clearing member i’s default fund contribution is approximately equal to

Contribution; ~ Non-Tolerance Contribution; (45)

= Non-Tolerance Amount X Non-Tolerance Weight; (46)

Uncovered Stress Loss;

= Service Fund A t 47
ervice Fund Amount x Z]- Uncovered Stress Loss; (47)
Stress Loss; — Margin;
~ Total Uncovered Stress Loss X — o0 00 argln.l (48)
)j Stress Loss; — Margin;
VaR;

~ ) VaR; : 49
L VaRi X S, 49
= VaR; = _5iq)_1(“stress)/ (50)

where, in the first step, we ignore an additional (“tolerance”) contribution that is related to tem-
porary forbearance of initial margin.!*! In the final two steps, we assume that the stress testing
approach (which determines stress losses) resembles a Value-at-Risk approach with confidence
level agress and is additive (as in the case of a Normal distribution), in which case the contribution
is equal to entity i’s portfolio Value-at-Risk.

According to default rule 21 (b), loss sharing contributions are proportional to default fund
contributions, which implies that entity i’s allocated share of default losses equals

(7'1'@_1 (“stress) — 5—1
Z](l — D]')(_qu)fl(“stress) Z](l - D]')a-]',

(51)

which is equivalent to loss sharing based on net portfolio risk.
Finally, Swapclear’s Default Fund Supplement rule S1 (a) implies that the default fund must
be replenished within 30 days after default events.

In the following, we provide the relevant excerpts from the LCH Limited Default Rules (as of
September 2022):

IATRule SC2 (i) on page 113 states: The “SwapClear Tolerance” which shall be the aggregate amount of temporary initial
margin forbearance provided by the Clearing House to SwapClear Clearing Members to enable registration of SwapClear Contracts.

IA1


https://www.lch.com/resources/rulebooks/lch-limited

From Schedule 6 Rates Service Default Fund Supplement - Part A Rates Service Default Fund
Supplement - Swapclear S1, p.127 ff.:

(b) the “SwapClear Tolerance Weight” of an SCM [...] shall be calculated by dividing (x) the
average SwapClear Tolerance Utilisation of the relevant SCM during the 20 business day pe-
riod preceding the relevant SwapClear Determination Date [...] by (y) the total of such average
SwapClear Tolerance Utilisations of all Non-Defaulting SCMs |[...]

(c) the value of the “SwapClear Tolerance Contribution Amount” of: (x) an SCM [...] shall be
calculated by multiplying the SwapClear Tolerance Amount by the SCM’s SwapClear Toler-
ance Weight [...]

(d) the “SwapClear Non-Tolerance Amount” shall be the value of that portion of the Rates Ser-
vice Fund Amount - SwapClear after deducting the SwapClear Tolerance Amount

(e) the value of the “SwapClear Non-Tolerance Contribution Amount” for a given SCM [...]
shall be calculated by multiplying the SwapClear Non-Tolerance Amount by the SCM's Swap-
Clear Non-Tolerance Weight

(f) the “SwapClear Non-Tolerance Weight” of an SCM shall be calculated by dividing (i) the
Uncovered Stress Loss [...] by (ii) the total Uncovered Stress Loss [...]. An SCM’s “Uncovered
Stress Loss,” [...] shall be determined by the Clearing House [...] by, inter alia, deducting the
amount of eligible margin held by the Clearing House with respect to the relevant SwapClear
Contracts [...] from the stress loss [...]

(g) the “SwapClear Contribution” of: (x) an SCM [...] shall be the sum of (i) that SCM'’s
SwapClear Non-Tolerance Contribution Amount [...] and (ii) that SCM'’s Tolerance Contribu-
tion Amount [...]

From Schedule 6 Rates Service Default Fund Supplement CS2, p.112 ff.:

(b) “The “Non-Tolerance Amount” which shall be the sum of: (1) the Combined Loss Value -
Limb (1); plus (2) an amount equal to 10 per cent of the Combined Loss Value - Limb (1)”

From the general default rules 21 (b) (p.21):
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the amount due by a Non-Defaulting Clearing Member in respect of an Excess Loss shall [...]
be the Non-Defaulting Clearing Member’s pro rata share of such loss arising upon the rele-
vant Default calculated as the proportion of such Non-Defaulting Clearing Member’s relevant
Contribution [...] relative to the aggregate relevant Contributions [...] of all Clearing Members
engaged in the Relevant Business other than the relevant Defaulter at the time of the relevant
Default.

From Schedule 6 Rates Service Default Fund Supplement - Part A Rates Service Default Fund
Supplement - Swapclear S1 (a), p.127:

[...] following a Default, any determinations on a SwapClear Determination Date and any such
SwapClear Determination Date which might otherwise have occurred under this Rule S1 shall
be suspended for the duration of the period (the "SwapClear Default Period”) commencing on
the date of such Default and terminating on the later to occur of the following dates:

(i) the date which is the close of business on the day falling 30 calendar days after the Rates
Service Default Management Process Completion Date in relation to such Default [...];

and

(ii) where, prior to the end of the period referred to in sub-paragraph (i) above [...] one or
more subsequent Defaults (each a "Relevant Default”) occur, the date which is the close of
business on the day falling 30 calendar days after the Rates Service Default Management
Process Completion Date in relation to a Relevant Default which falls latest in time [...].
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B Additional Results: Counterparty Risk Exposure

Corollary IA.1. The larger derivatives’ systematic risk exposure, the more beneficial is central clearing for

counterparty risk exposure, ag; L <0.

Central clearing reduces counterparty risk exposure if, and only if, n; < 17, i.e., if directionality is
sufficiently low, with 7 = % € (0,1). The larger the number of derivative classes K, the lower

is the portfolio directionality required for central clearing to reduce counterparty risk exposure, g—z < 0.
Figure IA.1 illustrates this result.

Proof. Using Proposition 1 and Lemma IA.2, it is

JAE; 9 f(K-1) 9 f(1)

o6 9 fK) ' TPFK)

<0. (52)

Moreover, it is

| _f(K) — f(K=1)
AE; <0 & 1, < 1) . (53)
Hence, 77 = % Since it is % = 1for K = 1and f(K) — f(K — 1) is strictly
decreasing with K (see Lemma IA.2), 7 < 1 for all K > 1. The remaining result follows from
9 _ 9 f(K) — f(K—1)
oK~k fay) ¥ ©4)
using Lemma IA.2. ]
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Figure IA.1. Maximum directionality for clearing to reduce counterparty risk exposure.

The figure depicts the function % = VK~ K—1 for B = 0. If entity i’s portfolio directionality #; exceeds
the function, central clearing does not reduce but increases counterparty risk exposure, i.e., is not beneficial. Instead, if
1; is below the function, central clearing reduces counterparty risk exposure, i.e., is beneficial.
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C Additional Results: Cost of Collateral

In our baseline model, collateral protects counterparties against losses but we abstract from the
cost of posting collateral. In this section, we extent the model by including a cost of collateral.
Specifically, we denote by c > 0 the marginal cost of collateral. Thus, the collateral cost for entity i
is cCiI; for uncleared positions with j and cC? for cleared positions with the CCP. For consistency
and without loss of generality, we assume that collateral costs arise only upon an entity’s survival.
Then, the impact of central clearing on expected default losses and collateral costs is given by
E[(1 = Di)(DL ! + e jen; Cf ' 4 ¢CEP) + LSCY)

ADLC; =
! E[(1—D;)DLK +cYic p; cg]

(55)

Whereas in the baseline model (with ¢ = 0) a higher collateral requirement is unambiguously
beneficial, with ¢ > 0 it trades off with higher collateral costs, as we show in the following propo-

sition.

Proposition IA.1 (Costly collateral). Assume that at least two entities have a portfolio that is not per-
fectly flat. Then, ADLC; is equal to

fK=1)  f(1) &(acep) ™2 E [H] + e (accp)
fK)  f(K) g () + e (tyc)

ADLC; = -1, (56)

Yty DiGij

where H = wi(5)+Z]-AL1,]-#(1—D]')wj(z5)'

(1) If entity i has a flat portfolio, n; = 0, then the impact of central clearing on expected default losses and
ADLC; _
7 daccp )

collateral costs is decreasing with the CCP’s margin requirement

(2) If entity i’s portfolio is not flat, ; > 0, and accp > 0, there exists 0 < & < oo such that the impact
of central clearing on expected default losses and collateral costs is decreasing with the CCP’s margin

requirement if, and only if, the marginal cost of collateral c is below ¢,

dADLC;
daccp

<0 & <@ (57)

Proof. Using Lemma 1, the collateral posted by entity i to the CCP is equal to

CrP = 59 Naccp) = 1iGif (1)@ (accp). (58)
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The total collateral posted by entity i to its bilateral counterparties in uncleared derivative classes
1,..,Kis equal to

Z CiI]<‘ = Z 0] f(K) D™ (D‘MC) Gif(K)q)il("‘uC)- (59)

jEN; jEN;
Then, ADLC; is equal to

E[(1 = D) (DL + ¢ jen; Cf 4 ¢CFP) + LSCY]
E[(1— Di)(DLE + ¢ Zjen; CF)]
E[(1 - D;))(DL{ " +¢Gi(f (K = 1)@ (aue) +17:f (1)@ (accp))) + LSCY]

- TE((1— Dy (DEX + cGif (K0~ (aue))] - oy

ADLC; = (60)

Using Propositions 2 and 4 and following the steps in previous proofs, the impact of central clear-
ing on the expected default losses and collateral cost of entity i is then given by

(1 — 7'[) (ﬂGiC(Déuc)f(K — 1) + C((chp)wi(5)lE |: e )J,-ZZI]\I ll]jZi(?ﬁ]gj)wj((s)])

ADLG = (1= 70) [2GiZ (@ne) f(K) + cGof () ()] ©2
(1= 70) (cGi(f(K = 1)@ (auc) +1if (1)@ (accp)))
U 1) MG @) fK) + Gif () T(w)] ©3
o S R [ EE s
- f(K) nC(zxuc)f( )+Cf( ) Haue)
_f(K=1) | f(1) é‘(“ccp)wéf)]E [H] + cii @ (accp)
ST TR0 ) e ) ©>)
Z/ 1,j ,DG] ]
where H = <>+zN1;<1 g)w,w)
The derivative of ADLC; with respect to accp is equal to
dADLC;  f(1) & (accp) A E [H] + i e T (66)
daccp f(K) 8 (aue) + D (ayc)
) - ¢11 iccipccp)) wgf)lE [H] + Cﬂim (67)
f(K) ¢ (aue) + c @1 (ayc)
_f(1) 1 o wi(9)
= ) 9T a8 Ty (e~ (L ecen) GV E ), (69
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using Lemma IA.2 and that the inverse function rule and the properties of the Normal distribution
imply that

o0 (accp) 1
onccp N @' (O 1(acep)) (69)
- 1 = : = ! (70)
P@ Tacer) — p(—® (1 —accr)) (@ 101~ acep))

By assumption, accp € [0.5,1) and, using that at least two entities have a non-flat portfolio and
>0, E[H] > 0.

. dADLC;
(1) Clearly, if ; = 0, then e < 0.

(2) If 7; > 0, then

dADLG;

<0< c<(l1—an
alXCCP ( CCP)

E [H] > 0. (71)

O

For entities” with a flat portfolio (17; = 0), there is no collateral requirement due to zero net port-
folio risk. Instead, for entities with 77; > 0, a higher collateral requirement for cleared positions,
accp, increases the benefit of central clearing (i.e., reduces ADLC;) only if c is small, as we show
in Proposition IA.1. In this case, the beneficial impact of collateral on default risk dominates. If,
instead, c is sufficiently large, the adverse impact on collateral costs undermines clearing benefits.

The effect of the marginal cost of collateral c on ADLC; is not obvious ex ante because it affects
both cleared and uncleared positions. The following proposition sheds light on the role of ¢ in
core-periphery networks when losses are shared based on net risk and collateral requirements are
the same for cleared and uncleared positions.

Proposition IA.2 (Costly collateral in core-periphery networks). Consider a core-periphery network
and loss sharing based on net risk. Assume that a,e = accp. Then, for any entity i € {1,..., N}, the
impact of central clearing on expected default losses and collateral costs is decreasing with the marginal cost
of collateral,

dADLC;
—_— <<

- 0. (72)

Proof. Let g € Nper and § = 0. Using Proposition 4, the proof of Proposition 8, and that 7, = 1, it
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is

D;z;
B[LSCg) = (1 - mE(xcer)2E | - é’:j]’:( = 55, (73)
= (1= mElocer) GV | —— <1>Zf£§€i§ Z’fif gj)m | o
= (1= mElocer) Gl IV | fggjijfﬁjm : 5
= (1 - m)Z(accrnsGef () L 1T )
— Gyt - E{acen) (1) T )

and, therefore,

E[(1 = Dg)(DLE™ 4 ¢ Yje, Cf " 4 ¢CEF) + LSCy]
ADLC, = -1 (78)
E[(1 - Dg)DLK + chGNg K

(1= 1) (7Gyl (@) f(K — 1) + Gy (ecp) f(1) EE2 1)

T - ) [RGE (ma) F(K) + G f (KD ()] 7)
(1= ) (cGo(F(K= 1)@ (@) + F()®accp)) )
(1 —7) [Gg&(auc) f(K) + cGg f (K) D (auc) ]
_f(K=1)  f(1) mg(accp) 22 4 e (wecp) B
“TRK AR e £ e T b e
The derivative of ADLC, with respect to c is equal to
IADLC,  f(1) @ Maccp)E(ttuc) — @ (mue)&(accp) mn )
oc - nf(K) (¢ () + @1 (aye))? .
If w,c = accp, then aADCLCg < 0if, and only if,
1—mw<1—?N/3-1 (83)
&> N (84)

which holds since 2N/3 —1 >1 < N > 3 and 7 < 1, which hold by assumption.
If h € Neore and for lim § N\, 0, using Proposition 4 and (the notation from) the proof of Propo-
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sition 8 it is

lim §Hj, = P(Dyper) lim Ay + (1 — P(Dper)) lim A, (85)
o0 0—0 0—0
= 7-[2N/3 6Gper 1-— 7TN/3 (86)
(N—=3)+6Gpy 1—m
and
- Y40 Dio
lim E[LSCy,] = lim(1 — )& (accp) (3Z) + 04)E | <o—— — _
5\0 5\O 88y + 0+ LNy iz (1 - Dj)(6L5 4 0))
= (1 — )& (accp)Ly lim 6Hj, (87)
SN0

= (1 - m)&(accp)Grf (1) N3 (88)

(N—=3)+6Gp, 1—m !
and, therefore, using that #;, = 0 and for lim 50

E[(1— Dy,)(DLy " + ¢ Yjen;, G +cCP) + LSC]
ADLC), = — R —— -1 (89)
E[(1 — Dy) DLK + ¢ Ljen;, CK]

(1-m) (nchaauc)f(K 1)+ &lacep) Guf ()N 5 11”’!3)

- (= 70) [1G (tu) F(K) + cGnf () ()] 0
(1= ) (<G (K = D)@ (aue) + F (U accr)
A ) G fK) + Grf (K w)] oD
A=) | ) Seeen N et s ©2)
FK) AR ) o () :
which is decreasing with c. O

In core-periphery networks, expected loss sharing contributions per unit of cleared risk f(1)
are smaller than expected uncleared default losses per unit of uncleared risk f(K) (see Proposition
8). A larger marginal cost of collateral c amplifies this difference between cleared and uncleared
positions and, thereby, increases relative clearing benefits. This effect is particularly pronounced
for core entities, which do not post collateral to the CCP due to their flat portfolio. In this case,
a larger marginal collateral cost increases only the cost of uncleared but not of cleared positions,
amplifying clearing benefits.
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D Additional Statements

In many proofs, we make extensive use of the following property of the Normal distribution: For
Y ~ N (u,0?) the truncated expected value is givenby E[Y | Y > 0] = u+ 0 9’21()(;" /a ‘?, and thus
E[max(Y,0)] =E[Y | Y > 0|®(u/0) = u®(u/c) +oe(—u/c), where ¢(-) and ®(-) denote the

probability density function and the cumulative density function of the standard normal distribu-

tion, respectively. From this property, we derive the following lemma:

Lemma IA.1. Let Y ~ N(0,02) and C = c® ! (a) with & € (0,1). Then,
E[max(Y — C,0)] = 0¢(a), (93)

where &(a) = (1 —a)® (1 —a) + (P (a)) with &(0.5) = ¢(0), &(x) < 0,0 < &(a) < ¢(0) for
alla € (0.5,1), and &(a) — 0 for a — 1.

Proof.
E[max(Y —C,0)] = (—C)®((—C)/0) +op(C/0) (94)
— (0@ (@)D ((~0® (1)) /0) + cp(0®(2)/0) (95)
=0 [(=o7 (@)@ (—07(w)) + p(@7 (w))] %)
=0 [(~o @)@ (7' (1-0)) + (@7 (w))] ©7)
= og(a) (98)
with &(a) = (1 —a)® (1 —a) + ¢(® '(a)), where we use that —®1(a) = & 1(1 —«a). If
a = 0.5, then it is &(a) = 0.5071(0.5) + ¢(®~1(0.5)) = ¢(0). Using that ¢'(x) = (—x)¢(x) and
the inverse function rule, the first derivative of ¢ is equal to
1oy _ (—1) _ _ 1
2(0) = (<1)®~ (1 =) + (1= ) gz + (~0 @)@ () gy
_ - (=1) -
=(-1)® 1(1—0c)+(1—0¢)m+(—® ")) (99)
NV PSR St S S DO e S
= (-1)d (1-0) At (1-a) Je Ay <% (00
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Moreover, it is

lim (1 — a)® (1 — &) + lim @(®1(a)) (101)
a—1 a1 N —
. 1—«a
=TT —w) (102)
~1
=1 103
w1 (1) % (@11~ ) 2 X gty % (1) (109)
=lim (1) x (@7 (1= a))* x (@7 (1 - a)) (104)
—lim(—1) x (q’fl(ll_"‘))Z (105)
a—1
(@ 1(1-a)
2xd (1 —a) x -G
= lim(~1) x — i (2 Y >/< po -0 - (106)
a1 (1) x (p(@71(1—0a))) 2 x ¢/(® 11 —a)) x 2@ T1=a)
2xd1(1—a) x T
—lim(—1) x @ (70 X g - (107)
a—+1 (1) x (p(@71(1—a))) 2 x (=211 —a)) x p(P71(1 —a)) x 2@ T1=a)
o 2x @M1 —a) x (p(@ M (1-a)))> -1 _
i T — ) xp@ 1w am(2)xe(@ (1 -a) =0, (108)

using L'Hopital’s rule and the inverse function rule. Together with ¢'(«) < 0, this implies 0 <
¢(a) < ¢(0) for all « € (0.5,1). From the above, it follows that ¢(«) — 0 for & — 1. O

Another result will be useful:

Lemma IA.2. Define f : (0,00) — (0,00) by f(K) = /B?02,K?+ 02K with 0,B,0m > 0. Then,
f'(K) >0, f"(K) <0, and forall K > 1itis

d

2 F(K) ~ F(K~1)] <0, (109)
Moreover, it is % = 5;%(1;2, and %J{E%; < 0forall Ky,Ky with 0 < Ky < Ky and B > 0.
: _ : _ @22 52 2 o ) — 2BoyK+a?
Proof. Rewrite f(K) = /X(K) with X(K) = B*0yK* 4+ 0°K. Itis f'(K) = 7/X® > 0 and

282022\ /X(K) — % (2f202K + 02)
£1(6) = S ,

(110)
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which is negative, if and only if,

AB%0y X — (2p%0mK + 0%) (203K + 0%) < 0

& 2p%03(2X — K(2B20K + 0%)) — 0 (2B 03K + 0%) <0

& 4p%o3 (X — (BPoyK* + %K) —c* < 0

=X

& —ot <o,

(111)
(112)
(113)

(114)

which holds by the assumption that ¢ > 0. Thus, f'(K) < f'(K — 1) and, therefore, -3 [f(K) —
f(K—=1)] = f/(K) — f/(K—1) < 0. The derivative with respect to g is straightforward to calculate.

Because f(K) > 0 for all K > 0, for Ky, K, > 0itis

2 f(K) L, 2 X(K)

9B f(Kz) 9B X(Kz)

<0,

which, if B > 0, is equivalent to

9 oK+ oKy
8,8 ﬁZO%AK% + (72K2

& 2B K3 (BP0 K3 + 0?Ky) — 2Boa K3 (2o K3 + 0?Kq) < 0

& 0?(K2Ky — K3Ky) + B?oa (K3K? — K3K3) < 0
&% (K —Kp) <0 < K < K2
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E Proofs for Section 3

Lemma 1 (Portfolio risk). The standard deviation of entity i’s portfolio in a given derivative class is given
by

i =Giniy/ ﬁZO']%/I + 02, (120)

Proof. The standard deviation of the portfolio in derivative class k is given by

7; $ var ( ). XZ) = \lvar ((5M+€K) )3 Uf]) = (Broy +?)
JEN; JEN;
=Gmi\/m- (122

O

2 v

JEN;

(121)

Proposition 1 (Impact of central clearing on counterparty risk exposure). The impact of central
clearing on entity i's counterparty risk exposure is equal to

L fK=1D)+npf(1)
AE; = 0 1, (123)

where f(K) = y/B?02, K2+ 02K. The larger the portfolio directionality n;, the less beneficial is central

clearing for counterparty risk exposure, o > 0

Proof. The impact of central clearing is equal to

GFK=D)Gnf() . fK=1) 4+ nf(1)
AE; = G (K) ! (&) b (129

where f(K) = /B?0%,K? 4 02K. Clearly, AE; increases with 7;. O

F Proofs for Section 4

Proposition 2. The expected default loss of entity i's uncleared positions in derivative classes 1 to K is

equal to

E[DLE] = nGi¢(auc)y/ Broa K2 + o2K. (125)
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Proof. Entity i’s expected default loss of uncleared positions in classes 1 to K is given by

E|DLf| = ¥ E

D, max (2){ cﬂ, >] (126)

JEN;
=n Y E |max (Zvl] (BM + o€*) — cﬁ,o)] (127)
JEN; k=1
=7 ;v \/ﬁ2a§41<2z; -+ Ko2022 (ayc) (128)
)

= nG;i¢ (e )/ BP0 K2 + 02K, (129)

where we use that defaults D; are distributed independently of profits XZ, that

K
Ck = VaR,, (Z X}@) (130)
k=1
K
k=1

= | var <— i X’;) D (ay) (132)

K
) Xk]) O aye), (133)

and Lemma IA.1. ]

Proposition 3 (Impact of central clearing on the aggregate default loss). The expected aggregate
default loss with central clearing is equal to

N
ADL =1} G (&(accp)mif (1) + &(auc) f(K — 1)), (134)
i=1

where f(K) = /203, K? + 02K. The impact of central clearing on the expected aggregate default loss is

equal to

ADL—Y N, DLE  &(accp) F(1) f(K-1)

AMDL=""o8 DIk~ el fR) TR

—1, (135)
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o |ZjeNi vij|

where Nagg = V. G

is the average net-to-gross ratio. AADL < 0 holds only if

G uc)
flagg < G(accp)

Proof. The CCP’s expected total default losses is given by

K CCp
D]-max(z Xg]-—Cj ,O)]
gEN;

Y. vgi(BM + o) — CFCF, 0) ]

8EN;

N
E |[DLCF| = Y F
=1

= ni]E lmax (

j=1

N
L \/var( Y 0 (BM +0eX)) & (accp)
j=

with f(K) = |/ B20%,K? + 02K, where we use that
ccp K
CP = VaRaee, | Y XK

g=1

= \ var (i X§]> CD_l(IXCCP),

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

and Lemma IA.1. Together with Proposition 2, the expected aggregate default loss with central
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clearing is thus equal to

E | DLCCP + % DLK! (146)
i=1
N N
= & (acep) f(1) Z Gini + Y mGi&(auc) f(K—1) (147)
i i=1
N
Y Gi (&(cce)yif (1) + ¢ (aue) f(K = 1)) (148)
i=1
and without central clearing it is equal to
N N
E ) DL | = 7g(auc) ) Gif (K). (149)
i=1 i=1
The derivation of AADL is straightforward. AADL < 0 is equivalent to
¢(accp) f(1) f(K-1)
) FROTE T g < (150
¢(accp) f(1) f(K—1)
Eoe) FR) 1 ST TRE) (5D
& (ouc) . .
s < gy F(K) — FK 1) (152)
The statement follows from
¢(auc) . . &(auc) . _ & (auc)
S f@ O I E VS e Y O = ey O

using that f(K) — f(K — 1) is strictly decreasing in K for all K > 1 (Lemma IA.2) and f(0) =0. O

Corollary 1. Central clearing reduces the expected aggregate default loss, AADL < 0, only if at least one
of the following conditions holds:

® aye < accp
The latter condition is equivalent to min;e gy Ny 17 < 1.

Proof. From Lemma IA.1, ay. > accp implies that ¢(ay.) < ¢(accp) and, thus, ‘:‘3((“7%)) < 1. To-

gether with Proposition 3 the first statement follows. For the second statement, note that the
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average net-to-gross ratio is a weighted average of individual entities’ net-to-gross ratio,

Z, Gm

154
21:1 G ( )

Nagg =

and, thus, 77,¢¢ < 1 requires that there exists at least one entity with 77; < 1. Vice versa, if there
Gj”j—"_zrl\il,i#]' Gi’]i < GU]J'_Zl 11#] < 1 D

xists at least one entity j with #; < 1, then =
exists at least one y ] i < en age G < TV G

Proposition 4 (Expected loss sharing contribution and the impact of central clearing). With the loss
sharing rule w(9), clearing member i’s expected loss sharing contribution is equal to

E[LSCi(6)] = (1 — m)¢(accp)wi(0)E LR ] ' (155)
w;(8) + L (1 — Dj)ew;(6)
The impact of central clearing on i’s expected default loss is given by
fK=1) | wi(@)f(1) E(accp) 1 L DiGly
ADL; = —E -1 156
fE T GAK) e 7 [<>+alﬁx = D))w,(0) (10

Proof. The expected loss sharing contribution of entity i with loss sharing rule w(d) is given by

E[LSC;] = P(D; = 0)E Zﬁl(lzﬁ(zi)j)ij) DLECP | D, = 0
PDi=0F [2%“1<1M(5)])w](5) & Dyma (gz G CP’O) =0
=(1-n)E |E S wi(fS))w]((s) ]Z;Dg accp)d; | Dy, .. | D; =0
=01 Pecer O | oo ?1D;M&|a:o

Zj 1,j#i Dja;

=(1—rm)¢(a w; (0
(1 —m)&(accp)wi(0)E i(0) + T (1 D)w](é)]

4

LCCP

using the definition of D and the law of total expectation.
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Using Proposition 2, the impact of central clearing for entity i is then given by

(1= )G (uc) f(K = 1) + (1 — )& (accp)wi(6)E [ ~r )+§fv 11/1:(11) 5 )w](&):|
(1 — ) tGi¢(auc) f(K) !

_fK=1)  wi(d) Elacer) f(1) p iz DiGitj ] _1
f(K) Gi Glaue) mf(K)™ | wi(8) + X, (1 — Dj)w;(6) '

ADL; =

O]

Corollary 2 (Aggregate loss sharing contributions). Conditional on at least one clearing member sur-
viving, aggregate loss sharing contributions are equal to the CCP’s total default loss.

Unconditionally expected total loss sharing contributions are equal to the CCP’s total expected default
loss scaled by the survival probability of N — 1 clearing members:

Z LSC;( ] 1-NYE [DLCCP} . (157)
Proof. If YN, D; < N, then
N (1 - D;)w;(é
Z;LSC - EN E Z;z"uzgé; DLECP — pLCCP, (158)

Analogously to the analysis in the proof of Proposition 3, if all clearing members default, then the
CCP’s default loss is equal to

N
DLC“" | Y"D; =N
i=1

E

N N
=E Zmax ( Z Cl-CCP, 0>] = Z Gﬂ’]i(:(oéccp)f(l). (159)
i=1 i=1

JEN
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Finally, by the law of total expectation, it holds that

N
DLS" | Y"D; = N]
i=1

N N
+IP<ZD1-<N>]E DL“" | Y D; <N (160)
i=1 i=1
N N
<P (Y. D;<N|E|DL“" | Y D; < N| = E[DL“"]
i=1 i=1
N N
~P|Y.D;=N|E|DL“’ | Y D;=N]|. (161)
i=1 i=1

Hence, one can rewrite the expected aggregate loss sharing contributions as follows (using Propo-
sition 3 and that LSC; = 0 for all i if ¥, D; = N):

N N N N
E | Y LSC :IP<ZD1-<N>IE ZLSCi|ZDi<N] (162)
i=1 i=1 i=1 i=1
N N
=P (Z D; < N> E |[DL“? | Y"D; < N] (163)
i=1 i=1
N N
= E[DL“"] - P <Z D; = N) E |DL“P | Y"D; = N] (164)
i=1 i=1
N N
=Y GiniG(accp)f(1) — ™ Y Gimid(acep) f(1) (165)
i=1 i=1
N
= (1 -V Y Gmié(accp)f(1) (166)
i=1
= (1-7V"YE [DLCCP} . (167)
O

Proposition 5 (Loss sharing based on net risk). The impact of central clearing on the expected default
loss of entity i is equal to

L1, DiGjt
(6 +1)Gi+ Ly ;i(1 = D)) (6 +1))G;

Slaccr) fF(1) 1
Glawe) f(K) 7T

where f(K) = /202, K> + 02K. ADL; is

_]_ -
+ (0 +15)

—~1, (168)
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dADL;

(a) decreasing with the collateral requirement for cleared contracts, ;="

9ADL;
. >0

< 0, and increasing with the
collateral requirement for uncleared contracts,

(b) increasing with the number of derivative classes, aAaiLi > 0, if, and only if, xccp > ¢, wherec > Qisa

constant,

(c) decreasing with the systematic risk exposure, BAB%L" < 0.

Proof. Using Propositions 2 and 4, the impact of central clearing for entity i is given by

(1— )G (ue) FK — 1) + (1 — 1) (acep) (55 +rf,->1E[ Lt Dy }

ADL — 52i+5'i+2j’i1,j%i(l_Df><5if+‘?])
T (1= m)7Gig(auc) f (K)
25\1:1,/# D;Gjn;f(1) :|
1

(1= WGl (K 1)+ (1 = mE{wcer) G+ 1)Gf (E | oo S POl
(1= m)7Gig (aue) f(K)
Y12 DiGitj
(6 +1)Gi + Ty (1= D)) (6 +1)G;

S(accp) f(1)

1
Saue) f(K) ;]E

K-1 «
= + (0 +7i)

7

where f(K) = /B2y, K? + 02K, using that D; and D; are independently distributed for i # j.
Define N

L1 DiGilli
Gi(6+ i) + Ly j2i(1 = D))Gi(8 + 1))

H=L1E
7T

Itis H > 0.
(@) The derivative of ADL; with respect to accp is equal to

dADL; _ {'(accp)
daccp & (tuc)

(5+;71-)J]:((11<)>H <0 (169)

and the derivative with respect to a,, is equal to

JADL; _ _‘:l(lxuc)g(“CCP)

S ()2 5+ ﬁi)&H >0, (170)

f(K)

using in both cases that ¢’ («) < 0 from Lemma [A.1.
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(b) The derivative of ADL; with respect to K is equal to

IADL;  f'(K— g - / ) N
K=DFK) = 1K) [FK=1) + 1) (6 + ) e H|
- fA(K) /

which is positive if, and only if,

1K / _ « \Glaccp)
FK=DIE) > FK) K1)+ £0)(6 ) St ]
( —

o SE-DfEK) — fK)F(K=-1) 1 Elacce)

fI(K)f(1) (5+ ni)H & uc)
 (K=Df(K) - fIK)f(K=1) 1
@C ! ( f/(K f(l) (5+ﬂi)HC(“uc)> < &ccp-

(c) The derivative with respect to 3 is equal to

dADL; 9 f(K—1) ¢ (accp) , @ f(1)

b op F& T e Tap K

<0,

using Lemma [A.2.

(171)

(172)

(173)
(174)

(175)

(176)

O]

Proposition 6 (Loss sharing based on net risk: directionality). Assume that at least three entities have
a portfolio that is not perfectly flat. Consider two entities h,g € {1,..,N},h # g, with G, > Gg. Then
there exists ¢ < 0 such that the following holds: if entity h exhibits a lower portfolio directionality than g,

1n < g, and either i, = 0 or 17, < 1, + ¢, then the impact of central clearing on the expected default loss

is smaller for h than for g,

ADL, < ADL,.

(177)

Proof. Consider two different entities 1, ¢ € {1,..., N}, h # g. By assumption, there exists at least
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one other entity with positive net risk, w ¢ {h, ¢} with Gy, > 0. Fori € {h, g}, define

N . DG
H =F | — L S I (178)
| (0 +7i)Gi + X2y (1 = Dj) (0 +177)G;
E [ L=y DgGeng + 1iiz gy DuGpipp + Zjl\il,jé{h,g} D;Gjn; (179)
| (1= 142y Dg) (6 + 17g) Gg + (1 = L(i—gy Dp) (8 + 1) G + S i g1,y (1 — D) (6 +177)G;
E [ D(14j—p Ggitg + 1{i—gy Guitn) + A (180)
_(1 — 1{l:h}D)(§ + T]g)Gg + (1 — 1{1:g}D)(5 + T]h)Gh +B !

where we define by D ~ Bern(7t) a Bernoulli distributed random variable with success prob-
ability 7t that is indepenc}ent from D; for all j € {1,..,N}\{h,g}, A = jlil,jeé{h,g} D;G;n;, and
B = ij\il,jé{h,g}(l — D;)(0 +1;)G;. Using Proposition 5, ADL;, < ADL, is equivalent to

f(K-1) S(accp) f(1)

Hh—1<f(K_1)+(5+17g)

y 1 1
+ 5+ EASA, I " H, -1 181
& O ) ) 7 ) Sawe) FR) 7S ast)
& (6+mn)Hy < (64 14)Hg (182)
< DGgng + A
& (§4+1,)E | — §18  — 183
0+ ) (0+1)G+(1—=D)(0+14)Gg +B (183)
. DGy + A
< (0+1)E | —= ——— (184)
1) (8 +1g)Gg + (1 — D)(6 +1,)Gy + B
) D A 5 D A
oF | — (0 +mn)( (:Jg’7g~+ ) _ (0 +1g)( th’7h~+ ) <0 (185)
(0+1)Gy +(1—=D)(0+ng)Gg+B  (6415)Gg+ (1 —=D)(0+1,)G, +B
(6+11) (DGgng+A) ((8+175)Gg+(1—D) (8+11,) G+ B)
N IE{ ] _ —(F1) (DGt A) (+14) Gyt (1=-D) (5+11g) Gy +B) } 0
((6+11g)Gg + (1 — D) (& + )Gy + B)((5 +14)Gy + (1 — D)(3 + 1) Gg + B) (186)

=C

The denominator is almost surely strictly positive since § > 0, 17 > 0,and G; > 0 for all j. Assume
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that 77, < 17 and Gj, > Gg. Then, if § = 0, for the nominator it holds that

Wh(DGgWg + A)(173Gg + (1 - D)nGy + B) — Wg(DGhWh + A) (G + (1 — D)WgGg +B)

=A [ (113Gg + (1 = D)iuGy + B) — 11 (11Gp + (1 — D)113Gg + B)]

+ D [mnGgnig (ngGg + (1 — D)quGp + B) — 115Gyt (1uGn + (1 — D)1gGg + B) |
=A [y (113Gg + (1 = D)ituGp + B) — 173 (muGy + (1 — D)3 Gg + B) |

+ gD [ B (Gg = Gu) + (1= D)GuGy (1 — 1) + 115G — 1G]
<A [B(yn —1g) + 1n (15Gg + (1 = D)yuGy) — g (11 Gu + (1= D)1gGg) ]

+ gD [B (Gg — Gn) + Gy (175 — 11)]

<A [B(p —1g) +munig (Gg — Gn) + (1 — D) ((74)*Gn — (115)*Gg) ] + Dt Gy (115 — 11)

<A [(10)*Gn + g (Gg — Gn) — (115)*Gg] + DGinuig (i1 — 1),
using that D € {0, 1} implies that D(1 — D) = 0. Because for x > 0 it is

x*Gy + x11g (Gg = Gi) = (15)*Gg < 0

_ Tl (G — Gn) + \/(’7g)2 (Gg — Gu)” + 4Gy (175)2Gy

& e
2
Gi — Gy +1/ (G — Gy)? +4G, Gy
& x <1 2C,
G — Gg + 1/ (Gi + Gg)?
e x <1 2G,
G,—Ge+ G, +G
S x <1 gZGh $ =g,

if A > 0, then it holds that

A [(Wh)th + g (Gg — Gu) — (Wg)ng] < 0.

(187)

(188)

(189)

(190)

(191)

(192)

(193)

Therefore, there exists ¢; > 0 such that Expression (187) is strictly negative if A > 0 and #7,774(17; —

i) < €1. Because the nominator of C is continuous in 5, there exists dy such that the nominator of

C is strictly negative if A > 0, n,175(17g — 17) < €1, and 6 < &. Let 6 € (0,p). From the definition
of A, T > 0, and the existence of an entity w ¢ {h, g} with Gy#,, > 0,itisP(A > 0) > 7w > 0 and
P(A < 0) = 0. Therefore, there exists 0 < ¢ such that if either 7, = 0 or 7, — 1, < ¢, then it holds
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E[C] = P(A = 0)E[C| A= 0] +P(A > 0)E[C| A > 0] (194)

GEnuttg (g — 1)
((6+1¢)Gg + B)((6 +1,) G + B)

<P(A=0)rE +P(A>0)E[C|A>0]<0, (195)

>0 <0

<0

and, thus, ADL, < ADL,. O

Proposition 7 (Loss sharing based on net risk in homogeneous networks). Consider a homogeneous
network as in Assumption 1. Then, the impact of central clearing with loss sharing based on net risk on the
expected default loss of entity i with § = 0 is equal to

ADL; = f(K=1)  &(accp) f(1) 1—nN1

+ -1, 196
FR T ) fIK) 17 (1%)
where f(K) = /203, K2 + 02K. ADL; is
(a) increasing with directionality, aAa[;Lf >0,

(b) increasing with the number of derivative classes, aAazL" > 0, if, and only if, 1 < ¢, wherec > O isa

constant,

(c) increasing with the probability of default, aAa?T L - .

Proof. Under Assumption 1, itis G = G > Oand n; = 7 > Oforalli = 1,..,N,. Then, the
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following identity holds:

N
_ L DiGi (197)
Gi(6+ 1) + X j2i(1 = D)) Gi(5+ 1)
GnYN, D
_ ] ’ZVZJ—L]# ] (198)
G(0+1)+ Ljty, (1 = Dj)G(o + 1)
vN N N
_ 15 Yim1j#i Dj = Xty jzi(1 = Dj) + X2 (1 = Dj) (199)
o+n | 1+ .(1-D))
r N
_ 1 g | N1l — D)) (200)
S+ 1+YN, ..(1-D))
U/ j=1,j#i j
-1 g - N 1 (201)
o+n |[1+Y54(1—Dj)
Ny 1 1
_ E -2, 202
b+ ( [1 + Y] N > 202
where Y ~ Bin(N — 1,1 — 7). Using the properties of the Binomial distribution, it is
1 1—nN
E [1+Y] - N1-n) (203)

Plugging into the formula in Proposition 5 yields

apt, = e @ Sl IO A (B[] - ) -1 e
e e s (e w) e
:f(ﬁ;)1)+(5+ ) é‘(" 1;)}{((;))7151 1_7T1N__7r1+ﬂ_1' 206
- e R T e

(@) The derivative with respect to portfolio directionality 7 is equal to

JADL; - g(tchp) f(l) 1— N1
o Glawe) f(K) 1—m

> 0. (208)
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(b) The derivative with respect to the number of derivative classes K is:

9ADL; _ f(K=Df(K) = f(K)f(K=1)  Elacer) fOFR)1-m"1 0

dK f(K)? Clawe)  fK)? 1—m

which is positive if, and only if,

Slacer) FOF(K)1— %1 FIK— 1)F(K) — FK)F(K— 1)
T elw) FKE 1-m © K2 (210)
FK-DFK) ~ FOFK-1) &(a) 1-7 o
F)F(K) Z(aeccr) T— a1’

e <

where the right-hand side is strictly positive because f'(-) > 0 and f”(-) < 0 (see Lemma
IA.2) imply that f/(K —1)f(K) > f/(K)f(K —1).

(c) The derivative with respect to 77 is equal to

(1)
o e f(K) -y 212
E(accp) f(1) 1—aN"1 — 7ZN=2(N - 1)+ aVN"1(N - 1) 213)
¢(auc) f(K) (1—m)?
_ Zlaccp) f1) 14+ naN"2(N—-2) — 2N"2(N —1)
= e () FK) (1= np e
E(accp) F() 1+ aN2(r(N—-1) —m— (N —1))
E(ue) f(K) =y 1)
_Blacer) f(1) 1= V2N - 1)1 = 7) + 1) 216
&aue) f(K) (1—m)? '
Note that ¢(N) = 1 — 7N72((N — 1)(1 — 7) + 71) equals zero for N = 2, g(2) = 1 — 7%(1 —
m+m) =1—1=0,and that
g'(N) = —log(m)m¥2((N = 1)(1 = 7) + ) — 72(1 — ) (17)
= V2~ log(m) (N = 1)(1 = ) +7) = (1= 7)), @18)
which is strictly positive if, and only if,
—log(m)(N-1)1—m)+m)—(1—m) >0 (219)
SN-1> —log(n)_lfn' (220)
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It is ﬁg(n) — £ <1 & log(n) < m — 1, which holds for all 7 € (0,1). Therefore,
L . T 1<N-1 (221)
—log(mt) 1—-m - ’

using that N > 2. Thus, ¢'(N) > 0, which, together with g(2) = 0, implies that g(N) > 0 for
all N > 2. Therefore,

dADL; _ &(accp) f(1) g&(N)
o7t g g(lxuc) f(K) (1 - 7T)

5 > 0. (222)

O]

Proposition 8 (Loss sharing based on net risk in core-periphery networks). Consider a core-periphery
network as in Assumption 2. Then, the impact of central clearing with loss sharing based on net risk as &
approaches 0 on the expected default loss of a peripheral entity § € Npey is equal to

_ _ +2N/3-1

and for a core entity h € Nore it is equal to

ADL;, = f(;((;)l) 4 2N/3-1 w —ZC);T6GW 1 1—_7T17VT/3 Cg(?pif;) J{((Il<)) _1, (224)
where f(K) = /203, K2 + 02K.
For peripheral entities, central clearing is not beneficial, that is, ADLg > 0, if, and only if,
1= N g fK) = FK=1) 25

1-m ¢(accp) f(1)
Holding all other parameters fixed,
(a) if accp < e, there exists N < oo such that ADLg > 0 forall N > N,
(b) there exists K < oo such that ADLg > 0 forall K > K,
(c) there exists &yc < 1such that ADLg > 0 for all a,c > &yc.

For core entities h € Nore, central clearing is
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e beneficial, that is, ADL;, < 0, if N > N for N < oo,

* and strictly more beneficial than for peripheral entities § € Nper, ADLy, < ADLg.

Proof. In the core-periphery network, the CCP’s expected default loss per loss allocation unit is

equal to
H; =E
=E
=

Zjl\il,jyéi D;Gn;

Ifi e Nper, then

H =F

_ - _ (226)
(0 +7:)Gi+ X2 (1 = D) (0 + 1) G
YjeNyer i DiGilj + LjeNuw ji DiGjllj (227)
| Gi(0+1i) + Ljene,,jzi(1 = D)) Gi(6 + 1) + LjeNr,jzi (1 — Dj)Gj(0 + 1)
~ Gper Zje/\/pe:,j#i D] _ (228)
_Gi(é + 771) + GPW ZjeNpgr,j#i(l - D]')((S + 1) + 6Gcore Zje]\/’wm]‘#i(l - Dj)
using that 7; = 1if j € Nper and 17; = 0if j € Noore by Assumption 2.
~ ~ Gper Zje/\/,,g,,j;éi Dj _ (229)
GPW(l + (S) + GPW(l + (5) ZjENpgr;j?’éi(l - D]) + (SGCOYC Zjef\[com(l - D])
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Ford =0andi € N, per, Hi is equal to (note that the expectation is well-defined since Gy, > 0)

r Gper Y . D
Hil;_ =E per = Nper 1 ) (230)
_Gpgr + Gper Zje-/\[perrj#i(l - D])
e Y€ Ny ji Dj (231)
| 1+ Ljewyizi(1— D))
_p [ Bietiii D1+ jeng s 1= D)) (232)
i 1 + Z].E./\/-per/j#i(l o D])
DY 141
—E jENper j7i _ (233)
| T+ Sjenjeizi(1 = D))
[ ’Nper’
e 1 (234)
_1 + ZjENpeh]’#i(l o D])
1
=|Nper |E —1 (235)
A YjeNperjzi(1 = Dj)
1 — 7 Nperl 1 — 7tVperl
SNy | 2Ty 236
| Per||Nper‘(1_n) 1—-7m (2%6)
2N

where in the last step we use the properties of the Binomial distribution. Using that ]/\/ pw] =5

is the number of entities in the periphery, applying the dominated convergence theorem, and
plugging into the formula in Proposition 5 it is thus

lim ADL; = fK—1) +1lim(5 +#;

0 T ) F(K) 237)
el s () e
e w
s
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Moreover,

(a)

(b)

lim ADL; > 0 (241)
fK=1) | &laccp) f(1) 1— N/
f(K) Claue) f(K) 1—-m
o Slacep) f(1) 1=V f(K) = f(K=1)

& ~1>0 (242)

>0 (243)
Slawe) f(K) 1-m f(K)
1— N30 Eae) f(K)— f(K-1)
& — > 0. 244
1-m &(accr) f(1) (244
A
2 2N/3 1
A is increasing with N since 94 = (—log(m))35—— > 0,and itis
: 1 lae) f(K)—f(K-1)
im A = — , 245
N—co 1—m C(“CCP) f(l) ( )
which is positive if, and only if,
1 ¢(aue) f(K)—f(K-1)
> 246
T acer) S0 (240
f(1) ¢(accp)
sSt>1-— . (247)
f(K) = f(K=1) &(ae)
>1

Note that % =1for K =1and R )f(f() - > 1 for all K > 1 since f(K) — f(K—1)
is decreasing with K (see Lemma IA.2). Since §(«) is decreasing with a (see Lemma IA.1),
if accp < aye, it is gé‘(xcfs) >1land 1 — f(K){(fl()K—l) Cg&i@) < 0. In this case, imyn_yc0 A > 0.

Therefore, if accp < aye, there exists N < oo such that lims ., ADL; > O forall N > N.

A is increasing with K and it is

1— 7.C2N/371

since 2¥ > 1. Thus, there exists K < oo such that lim; ,, ADL; > 0 for all K > K.
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(c) Since §(«) is decreasing with « and lim,_,; {(«) = 0 and £(0.5) = ¢(0), itis

1— 7.[2N/371

im A=——— >0,
oculclz}l 1—m > (249)

and, thus, there exists &, < 1 such thatlim; ., ADL; > 0 for all a,c > &e.

If i € Neore, then

5H; = E 5Gper Tienpw Dj (250)
| Geored + Gper Lje Ay (1= Dj) (14 8) + Geore LAy ji (1 — Dj)9
_ nger ZjENper D] (251)
Geored + Gper Ljenr,,, (1 — Dj) (14 6) + 8Geore Lienry,,izi(1 — D))
1= / ] 7 j
5Gper ¥ D:
=P(Dper)E i} per LjeNper 2j | Dyer (252)
Geored + GPc’r Z]'EN,M (1- Dj)(l +0) + 0Gcore Z]-E/\[wm].#i(l _ D])
SGper Z]GN or D] o
+ (1 = P(Dper))E S — g” L ‘ S Fos
core0 + per Z]GNpr.’r( ])( + ) + core Z]e/\[mn,,]?él( D])
5Gper YN, 1
o +4 . (253)
Geore0 + 0Geore LjeNoore,ji(1 = D))
=A;
SGper ng/\[ or D] o
+ (1 =P (Dyper)) E e : e Sn i A e — ol
core0 + per Z]GNper( ])( + ) + core Z]e,/\[cm,,ﬁél( D/)
=A,

using that D, and D, are independently distributed for n # m, where D;,, = {D € {0, 1N D; =
1VYj € Nper} is the set of states in which all peripheral entities default and D, its complement.
Since conditional on Dy, there exists j € Ny such that (1 — D;)(1+6) = 143 > 0, A, almost
surely has a strictly positive denominator and is, thus, well-defined for 6 = 0, which implies that
(using the dominated convergence theorem)

ljm Az =0.
0—0
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Moreover, for all § > 0, it is

A — |Nper|GPerlE 1 _ ’Niﬂer’GPer 1 — rrNeorl (254)
! Geore 1+ Zjej\/’cm,j;ﬁi(l - Dj) Geore |-N—core‘ (1 - 7T)
%Gper 1— 7tN/3 _ 6Gper 1—n7N/3 (255)

TN312G,, N/3(1—n)  (N—3)+6Gp 1—7 '

using that Neoe = % + 2Gper, [Nper| = %, and |Noore| = g and the properties of the Binomial
distribution. Therefore,

lim 6H; = P(Dper) lim Ay 4 (1 — P(Dper)) lim Ap (256)
0—0 0—0 0—0
 aN/3 6Gper 1— N/3
T (NZ3)+6Gy 1-7 (257)
and
, _fK=1) s Clacer) f(D T
P APL =" IO e ) Fky (258)
_fK=1) | Ny 6Gper 1— N3 &(accp) f(1) 1
TR T TN 466 1-7 ) fR R P
_fK=1) | Ny 6G per 1—7N3 E(accp) f(1)
TR T N3 1 6C (- ) Ea) fR) @0

Consequently, limy_s lims_,y ADL; = f 5{1&)1) —1 < 0. Therefore, there exists N such that lim; ., ADL; <

0 forall N > N, that is, such that entities in the core benefit from central clearing.

For g € Nyer and h € Nogpe it is

lim ADL; > lim ADL,, (261)
0—0 0—0
o1 N3 E(weep) f(1) o 2N/3-1 6Gper 1— N3 &(accp) f(1) (262)
1-m & (auc) f(K) (N — 3) + 6Gper 1-m ‘:(“HC) f(K)
1-m (N=3)+6Gp 1—m
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which holds because

ooy 6Cur 1=yl o (264)
(N=3)4+6Gpy 1—m — 1—m
<1
N/3-1 _ N/3-1,.N/3 _ 2N/3-1
_ T T T < 1-m . (265)
1-m 1-m
O

Example 1. Consider a core-periphery network. Central clearing with loss sharing based on net risk re-
duces the expected default loss in aggregate, but it does not reduce the expected default loss of peripheral
entities for the following parameters: Gpey = 1, m = 0.05, N = 21, K = 10, ayc = accp = 0.99,
c=oy=1p=03.

Figure 3 illustrates comparative statics varying either the number of market participants, N, or the
systematic risk exposure, B, while holding all other parameters constant. Figure 3, panel A, shows that
larger N reduces AADL. Intuitively, a larger market enables more risk sharing and, thus, central clearing
reduces the expected aggregate default loss by more. In other words, central clearing becomes more beneficial
overall. However, the impact of central clearing on an individual entity’s expected default loss is largely
unaffected by N. This is intuitive from the closed-form expressions in Proposition 8. A larger expected
number of defaulters roughly balances a larger expected number of survivors.

Figure 3, panel B, shows that a larger systematic risk exposure B reduces AADL as well as each entity’s
ADL. This result is in line with Proposition 5, which shows that larger B reduces bilateral netting efficiency
and, thereby, makes central clearing relatively more beneficial. This effect is particularly pronounced for
peripheral entities because they make larger loss sharing contributions.

Proof. From Proposition 3, the impact of clearing on the expected aggregate default loss is equal

to
E(acep) f(1) FIK=1)
AADL = f, L fK=1) -
C(D‘uc) f(K) asg f(K)
where
N
- Diewvi| . 26w+ -0 67)
a B o —
: LG W Gy + Y T2
6Gper 6Gp€r

(268)

" 6Gper + N—=3+6Gper  12Gper + N —3
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in the case of a core-periphery network. The statement follows from setting the variables equal to
the parameters. ]

Proposition 9 (Loss sharing based on net and gross risk).  Consider loss sharing rules based on net
and gross risk, that is, with 6 € (0,1).

(a) Assume that 7; =1 € [0,1] forall j =1,...,,N. Then, forany i € {1,..., N}, it is aAagL" =0.

(b) Consider an entity with a flat portfolio, ; = 0. Assume that there exist at least two fellow clearing
members a and b, a # b, with portfolio directionality 1, > 0 and 17, > 0. Then,

dADL;

3% > 0.

(c) Consider an entity with a fully directional portfolio, n7; = 1. Assume that there exist at least two fellow
clearing members a and b, a # b, with portfolio directionality 1, < 1 and n, > 0. Then,

dADL; <0
90 '
Proof. From Definition 4 and Proposition 1, it is
wi(8) = 0Gif (1) + (1 = 8)miGif (1) = (6 + (1 = &)m:) Gif (1). (269)
The derivative of w;(6) with respect to ¢ is equal to
Bwi
a5 = A=m)Gif(1). (270)

i DGty
Wi (6)+ 171 .21 (1—Dj)w; (6)

Define by H = the CCP’s default losses per unit of loss sharing weight. The
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derivative of ADL; with respect to J is equal to

OADL; _  f(1) &laccp) 9 Y, DiGit 1
B~ Grf(K) tlaw) 261 F wi(6) + XNy j4i(1 — Dj)w;(5) 71
_ Q) dlxcer) (e
- LS (a-mGiEL o7
oy [ G + B D-)(l—rmcjfmb -
’ G D)@+ (1= d)) + Ly, (1= D), (0)

_ fQ) Glacer) (4
B ﬂf(K) g(“uc) ((1 Hl)f(l)lE[H] (274)

B o (1= 1:)Gi + LjLy (1 = D) (1 = 1) G;
S = O T om) + 21— D)6 + (- )G, ) @79)
which is positive if, and only if,
1—771' (1_771)G +Z 1]#1( D])(l_U])G]
N (T T T rwr P s g cuysw T Pa s I
1—7; 1, wil0)+XE .0 D;)wj(0)>
© S Ta o E[H] > E |Hs (1 w0 (0) + 2 21— Dy, 0) (277)
11— B w;(0) +ZN1]7£1(1 ])w](O)
i )m]E[H] > E[H] - E le(a) I 0~ D 0) (278)
w;(0) + Zjlil ji(1 = Dj)w;(0) 1—7;
o w;(8) + L j4i(1 = Dj)w;(9) > Bl =055y o e
w;(0) + iji1 ji(1 = Dj)w;(0) w;(0)
< E Hw,»(&) " E}il,,-#i(l D,)w,0) >E {Hwi(a)} (280)
o F (wl(o) + Z] 1]#1( D])w](o) B w,(O)) <0 (281)
w;(6) + Z] 1Hél( — Dj)w;(s) Wi ()
o | D= D)) (i 0)wi(8) — wj<5>wi<o>>] e o8
wi(8) (wi(6) + L, (1 — D)awy(6))
sE|A )i (1 - D;)(w;(0)w;(5) — wj(zs)w,-(o))] >0, (283)
L =LA

I
wi(9) (wi(8)+ 1 4 (1=Dpw;(9) )
From Inequality (283) it follows that:

where we define H =

which is nonnegative with probability one.
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(a) aADL =0ify; =5 € [0,1] forall j = 1,.., N, since in this case

N
E[A Y. (1-Dy)(w(0)wi(6) - wj<5>wi<o>>] (284)
j=Lj#i
N
=S|} (1-D)(1Gui®) ~ (oG (285)
j=1,j#i
N
=f()yE |H ;#.(1 — D) (Gj(6+ (A =8)n)Gif(1) = (64 (1 =6))Gjf(1)Gi) (286)
J=Ly7Ft
—f(1)%(6+ (1—4) % )(Gj—Gy)| =0. (287)
1211#1
(b) aADL’ > 0if #; = 0 since in this case w;(0) = #;f(1)G; = 0 and, thus,
N
E|H Z# (1= Dj)(w;(0)wi(5) — wj(5)wi(0))] (288)
j=1,j#i
N
=E |H ) (1-D;)(f(1)Gwi(s ))] (289)
=i
>w;(8) f(1)E [H (1 — Da)aGa + (1 — Dy)1Gy)] > 0, (290)

where we use that by assumption there exist a,b € {1,..,N}\{i},a # b, with 5, > 0 and
1y > 0 such that P(D, = 1,D, = 0) +P(D, = 0,D, = 1) > 0 implies that P(7 > 0, (1 —
Da)l’]aGa + (1 — Db)I’]bi > O) > 0.

() %2PLi < 0if y; = 1 since in this case w;(8) = (6 + (1 —0))f(1)G; = f(1)G; and, thus,

N
E|H ), (1—D]-)(w](0)wz(5)—wj(é)wi(O))] (291)
j=1,j#i
N
=f(1)GE |H )_ (1-D;)(w;(0) — wj(é))] (292)
j=1j#i
<f(1)G{E [H(1 — D,)(wa(0) — wa(6))] <0, (293)

where we use that by assumption there exist a,b € {1,..,N}\{i},a # b, with 7, < 1 and
7y > 0such that w,(0) —w,(8) = (1a — (0 + (1 = 6)1na)) f(1)Ga = —6(1 —12) f(1)G, < O for all
§ > 0 and that P(Dy1,G, > 0,D, = 0) > 0, implying that P( > 0, (1 — D,) (w,(0) — w,(6)) <
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0) >0and P(h < 0, (1 — D,)(w,(0) — w,()) < 0) = 0.

Ul
Proposition 10 (Loss sharing based on gross risk). Consider two entities g,h, g # h, and assume that
loss sharing is proportional to gross portfolio risk, 6 = 1. Then, the difference in the impact of central
clearing between the two entities is equal to
ADLg — ADL,

_Glacep) f(1) 1 (lE [ YYD
7T

(294)
- ]'G]'U]' | Dg —0 Zle
‘:(D‘uc) f(K) Zj:l(l - Df)Gf

V. D;Gn;
~E =12/ |Dh:0>.

L1 (1-Dj)G;
(a) Conditional on Dy = Dy, the impact of central clearing is the same across entities

ADLgIDg=Dh — ADLh‘Dg Dy,

(295)
(b) Ifng = ny, then

Gn > Gy = ADL;, < ADL,

(296)
(c) If Gg = Gy, then

> 1y < ADLy, < ADL

(297)
(d) Ifh € Neore and ¢ € Npg, in a core-periphery network, then there exists 7t > 0 such that for all
e (0,7) it is

ADLy < ADLy,

(298)

Proof. When ¢ = 1, loss sharing weights are equal to w; = G;f(1). Using Proposition 4, the impact
of central clearing on i’s expected default loss is then given by

apr; = F&-1)

w,(8) lacep) F(1) 1 £, DG

1 " Ci ‘SMCCP ) f(K) EIE LUZ( )"’ZJ:] 1]]751( ]l]) )w](g)] o 2
_ A=) | G élacce) F) 1 Y DiGit -
- ® Gi &lawe) f(K) ”El Gif(1 )+Zj]\i1,j#i(1Dj)ij(1)] boew
_ f(K=1)  &(accp) f(1) 1 Z
TR Ewe) )T | TN

:( ”? |Dl~:O]—1. (301)
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Consider two entities g, i € {1,..., N}, g # h . Then, the difference in the impact of central clearing
is equal to

ADLy — ADLy, (302)

_Glaccp) f(1) 1 (]E [ Lt DiGimy L DG | Dy = O] )

BACO R o B et L B S W TS
N, (1-D)G ¢ 1 (1-Dj)G;

B Slaue) f(K)m

Define by D a Bernoulli distributed random variable with success probability 7 such that D and
D; are independently distributed for all j ¢ {g, h}. With A = N 1j¢{gn} PiGitli = 0 and B =

1
Ly igrem (1= Dj)G; >0

ADLg — ADLy, 203
&(accp) f(1) 1 (303)
é(“uc-) f(K) 7
> D A
—FE DGhr/h~+ A _ Ggﬂg:i_ (304)
_E -(DGhﬂh +A)(G,+ (11— D)Gg +B) — (DGgiyg + A)(Gg +(1- D)Gh + B) (305)
I (Gg+ (1 —D)Gy + B)(Gy + (1— D)Gy + B)
. [ AD[Gy, — Gg] + D [Gﬁﬂh — G311g + GgG(1 — D) (111 — 11g) + B(Guig, — Ggﬂg)} 306)
B (G¢+ (1—D)Gy+B)(Gy,+ (1—D)Gy + B)
[ - A(G), — Gg) + G2y, — G235 + B(Gypp, — G
_elp (G g) i wlh glg ( h~77h 21g) (307)
(Gg +(1-D)G,+B)(G, + (1— D)Gg + B)
A(Gy, — Gg) + G2y, — G2y + B(Gpipp, — G
R (G 2) 1 gllg (Guitn 21g) , (308)
(Gg + B)(G, + B)
using that
- - 0x(1-0)=0,ifD=0
D(1-D) = _ (309)
1x(1-1)=0,ifD=1

(@) If Dg = 0 and D;, = 0, then Equation (302) implies that the impact of central clearing is the
same for entities  and ¢. Moreover, if D, = 1 and D, = 1, cleared and uncleared default
losses are zero and the impact of central clearing coincides, as well. Therefore, conditional on

Dg = Dy, the impact of central clearing is the same across entities, ADLyp _p, = ADLyp,—p,-
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(b) If 7g = 73, then Expression (308) is equal to

_ [AGi =60+ [ G~ GE+ B(Gy ~ G) -
& (Gy + B)(Gy + B) (310)
:G — Go)(A+1,B) + 1,(G? — G2
_E (Gn 2)( 1gB) +114(G;, 2 , (311)
(G¢+ B)(Gr + B)
which is positive if G, > G,. Thus, ADL; — ADLy, > 0if G, > Gq.
(c) If Gg = Gy, then Expression (308) is equal to
Gi (11w — 115) + BGy, (111 — 115) G, +B
E | & g 8| _ — 1 )G.E [h } , 312
T (Gn + B)(Gy, + B) e = 11g) G (Gi + B)? (312

which is positive if, and only if, 7, > 7. Thus, ADL; — ADLy, > 0 if, and only if, 17, > 7.

(d) In a core-periphery network as in Assumption 2 with i € Neore and § € Nper, it is G, =
% +2Gper, Gg = Gyper, 1 = 0, and 77, = 1, and, thus, Expression (308) is equal to

T A(M52 +2Gper — Gper) — Gpor — BGper B Aw — (Gper + B)Gper (313)
(GPET—FB)(% +2Gpgr+B) (Gper_i_B)(w_*_B)
Moreover, it is
N
A= ), DiGn=Gper ), D (314)
j=1j¢{gh} JENper\{g}
N N —-3+6G
B= ) (-D)G=——73—" ) (1-D)+Guw ) (1-D) (15
j:1,j$é{g,h} jeMure\{h} jENper\{g}
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which implies that the nominator in the expectation in Expression (313) is equal to

_ N-3+43G
A :A% — (Gper + B)Gper (316)
N-3+3G
_ GW# D; - G2, (317)
jENper \{g}
N —3+6G
*Gper % Z (17Dj>+Gper Z (1Dj)>
JENcore\ {1} JENper\{8}
N —-3+3G
= GPE”( Z (Dj 3 = (1- D]')Gper> (318)
JENper\{g}
N — 3+ 6Gyper
- % ' (1- Dj) - Gper)
jE€Ncore\ {11}
N —3+6G N—-3+6G
= Gper )y (ng,m - GP”) - % (1-Dj) - Gper)
j€ENper \{8} JENcore\ {1}
(319)
N-3+6G — N-3+6G —
, 3 3 3 3
JENper\{8}
N —3+6G
jENcore\{I}
— — N —3+6G —
G N =3+ 6Gper D;GNZN 3 + 6Gper N 3—Ger (321)
p 3 ] p 3 3 3 p
je{l . N}\{gh}
=ab —b, (322)
with
N —-3+6G
A= GW% >0, (323)
. 2N -3 N—-3+6G,y N—3
b= Gy (Gper -3, No946Gu N -3, Gw) >0, (324)
D= Y. D~ Bin(N -2,n). (325)
je{l N}\{gn}
We defined = b/4 > 0. Then,
A>0< aD-0>0 < D>d. (326)
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We consider the following two cases:
D > d: In this case, A > 0. Then, using that B > 0, it is

A A

(Gper + B)(N*3*§6Gpgr + B) - Gpm, N*3§6Gp€y .

D < d: In this case, A < 0. Then, using that

N —-3+4+6G —
S %(‘Ncore’ - 1) + Gper(‘Nper‘ - 1) =b > 0/
itis

A A

(Gper +B) (5" +-B) " (Gper + b) (F—5" +-D)
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Combining both cases, Expression (313) is equal to

| AT~ (Gper £ B)Gper
(Gper + B) (F=5°2 + B)
. A -
=n(P(D > d)E |D>d
< (Gper + B) (X225 1 )
i A .
+P(D < d)E - yD<d>
(Gper + B) (2550 1 )
<(~ )]E[A|Dzdj < E|A|D<d|
<n(PO>d—Lto L ipD<d )
GperN 3;6(;,,@, (Gper + D) (N 3+6Gm 4 D)
:n< E [A]
(Gper + b) (=250 4 )
> E|A|D2>d| ) )E[MDEJ}
P(D>d L +1P(D2d>
(Gper + ) (F=572 +) Ger™ 52
< E [A]
(Gper+b)(N 3+6Gpgy E

+0)
=) =)
GWN 3+6Gm (Gper + D) <N 346G yer 1)

| Cor DO 4B - Gy )

Cpor N340 (G 4+ ) (2
:n(( AN=2)7=b . pp>dE [A|Dzai]g~>

N— 3+6Gper +D)
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(331)

(332)

(333)

(334)

(335)

(336)

> 0. Using Markov’s inequality (note that d > 0), it

(337)



Moreover, itisE |A | D > d| < 4(N — 2) — b. Using this in Expression (336) yields that
g p y

a(N —2)m — b - oA R
+P(D>d)E|A|D>d ) (338)
( (Gper + B)( N 3+6G,,e, +5) { }8
a(N —2)m — b (N-2)m A
_ W=D 2y b ). (339)
( (Gper +B)( N— 3+6GW +D) F 8
—¢

When 7t approaches zero, the term inside the parentheses becomes negative:

A~

C— — b <0 for m—0. (340)

(Gper + b) (F=2EC0r 1 )

Because of continuity, there exists # > 0 such that for all 7 € (0, #) it holds that 7C < 0.
Using Equality (308), for 7 € (0, 77) itis, thus, ADLy; — ADL, <0 < ADLg; < ADLy,.

O]

Corollary 3. Consider a core-periphery network and let § € Nyper and h € Nope. If 70 is sufficiently small,
there exists 6 € (0,1) such that ADLy = ADLy, for the loss sharing rule w(5) and that ADLy > ADL,
if, and only if, & < 4.

Proof. From Proposition 8, it is ADLgy > ADLy, if loss sharing is based on net risk, that is, when

0 approaches zero. From Proposition 10 (d), itis ADL; < ADL,, if loss sharing is based on gross

risk (6 = 1) and 7t is sufficiently small. From Proposition 4, it is aAa]z-Lg < 0and % > 0, which

implies monotonicity of the differential impact of central clearing in J, that is,

d(ADLy — ADLy,)

3% < 0.

Together with continuity, the statement follows. ]

G Proofs for Section 5

Lemma 2 (Optimal fee). For an optimal clearing rule (F*,6*), defined as the solution to (36) subject to
(37) and (38), the optimal fee is equal to

F* = £ (K)&(aye) min (—ADL;(5*,Q0)), (341)

ieQ)
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where ADL;(6, Q) is the impact of central clearing on i’s expected default losses considering only the set Q)
of market participants, analogously to Equation (20),

E |(1- Di) Cjensnn DLE " + LSCi(6,0) |

ADL;(6,Q) = — p
E (1 Dl)EjEMﬂQDLi]'

~ 1. (342)

Proof. The participation constraint (37) is equivalent to

(1-mF Y |uj| <(1-m) (]E

Y, DLE— Y DLy '~ ). DL{jD (343)

JEN;NQY JEN; JENNQY JENA\Q
_ E[LSC,(5, Q)]
S1-mF Y, |vj| <(1-n) (IE |J Y, DLE- Y Dij*l ) — E[LSC;(5,Q)] (344)
JENNQY ieN;:NQ JENNQ
&(1-7)FG(Q) < (1- ) (]E {DLZK(Q) - DLlK_l(Q)D — E[LSCi(5, Q)] (345)
(1-mFG(Q) _ _ ((1—mEDL () + EILSG(6,Q) )
(- mEDLEQ)] = (1~ ME[DLK () - ‘
FGi(Q)
E[DLN Q)] < —ADL;(5,Q)) (347)
&F < —nf(K)Z(auc)ADL;(6,02), (348)

where G;(Q), DLX(Q), and ADL;(5,Q)) are the gross position, uncleared default loss, and impact
of central clearing on the default losses of entity i considering only the set () of market participants.

Because the participation constraint must hold for all i € (), it is

F* <min —7f(K)&(ayc)ADL;(6*,Q) = 7t f(K)E&(aye) min(—ADL;(6*,Q))). (349)

icQ) ieQ)

Since the objective function (36) is increasing in F, the optimal clearing fee maximizes F with

respect to the participation constraints, which implies that
F* = mf(K)§ (@) min(~ADLi(3,0). (350)
[AS

O

Proposition 11 (Optimal clearing rule). Consider a core-periphery network. Assume that 7t is suffi-
ciently small, such that Corollary 3 applies. Then, the optimal clearing rule is one of the following:

(A) All entities use central clearing, QO = {1, ..., N}, the loss sharing rule balances the impact of central
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clearing across entities, 6* = 5, and the fee is equal to
Fy = —mé(aye) f(K)ADL1(QY). (351)

(B) Only core entities use central clearing, Q0 = Neore, the loss sharing rule is indeterminate, and the fee
is equal to

Fg = r¢(auc) (f(K) — f(K=1)). (352)

Proof. Entities only differ in whether they are in the core or periphery of the network, but oth-
erwise face the same participation constraints. Let g € ./\/'pe, and h € Nye. Leté € (0,1) such
that ADLg(6,{1,..,N}) = ADL;(5,{1,..,N}) , which exists due to Corollary 3. We rewrite the
objective function (36) as

O=)Y E|1-D;) Y, [vj|F|=01—-mn)FG(Q), (353)
ieQ) JENNQY

where G(Q) = Yicq Ljenina |vi;] is the total gross volume cleared.
Because each peripheral entity trades only with a core entity, it is not feasible that only pe-
ripheral entities use central clearing. Therefore, N C Q. Thus, there are two possible sets of

clearing members QA2

(A) Assume that Q) = {1,..., N}. In this case, all entities use central clearing. Assume that §* < 5.
Then, using Corollary 3, it is ADL;,(6*,Q)) < ADL¢(6%,Q)), and, thus, using Lemma 2, the
optimal fee is equal to

Fp = mtf(K)§(aue) min(—ADL;(67, Q) = —7f (K)G (uc) ADLg (67, Q). (354)
i€
.. ... 9ADL . 7
From Proposition 4, it is —;* < 0, and, thus, for all §* < 4,
200(o* oF% 0ADL,(5*,Q)
) — 1= me@ % = —(1—m) GO (R 2 o ss)

Therefore, 6* < § is not optimal.

1420 is nonempty by the assumption in Footnote 24.
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Assume that 0* > §. Then, ADL;,(6*,Q) > ADLg(6*,Q)), and, thus, using Lemma 2 it is

F:l = ”f(K)‘:(“uc) min(_ADLi((S*rQ)) = _nf(K)‘:(“uc)ADLh(d*/Q)- (356)

ieQ)

From Proposition 4, it is aAa%Lh > 0, and, thus, for all 6 > §,

90(6%)
30

— (1- G %2 = (1 - Waf(R)Ew) G 22D Lo @sy)

Therefore, § > 6 is not optimal, and §* = 5 is a maximum. Thus, §* = § maximizes the CCP’s
profit.

Assume that O = Ny,. In this case, only core entities use central clearing. Because core

entities have zero net risk, 5; = 0 for all j € Nore, using Proposition 4, the expected loss
sharing contribution is equal to

YjeNiore,ji D)}
Wi (0) + LjeN, i (1 — Dj)w;(0)

E[LSCi] = (1 — m)¢(accp)wi(0)E =0. (358)

Therefore, for alli € Ny the impact of central clearing on the expected default losses is equal
to

ADLi(6, Noore) = T & _fl()K_ fK), (359)

independently of the loss sharing rule J. Therefore, using Lemma 2, the optimal fee is equal

to

f(K=1) - f(K)
f(K

Assume that the loss sharing rule is 6* € [0, 1]. If any peripheral entity g € Ny, joins the CCP,

Fg = —mtf (K)G(auc) = 7§ (auc) (f(K) — f(K—1)). (360)

the CCP’s expected default losses become strictly positive. Thus,

ADLg(8*, Neore U {g}) > fK= fl()K_ f(K) (361)
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From the proof of Lemma 2, entity g prefers not to use central clearing if, and only if,

— f (K)G(@uc)ADLg (6", Neore U {g}) < Fp (362)
& — 7f(K)§(auc) ADLg (6%, Noore U {g}) < 78(atuc) (f(K) — f(K—1)) (363)
& — ADLg(6*, Neore U {g}) < f(K) ;(fK()K —1 (364)

. f(K—1) — f(K)
& ADLg (6%, Neore U {g}) > 7 ) (365)

Therefore, constraint (38) holds for all g € per-
O

Proposition 12 (Curtailing clearing participation). In the setting of Proposition 11, clearing rule (B)
strictly dominates (A) if

(F(K) = f(K~ 1)) Elae) < max {2“4’; >, i} F(1)é(acee) (366)

In this case, it is optimal for the CCP to dissuade peripheral entities from using central clearing. There exist
K < o0 and &, < 1 such that Inequality (366) holds if K > Kor aye > by

Proof. Letk € {1,.., N}. Clearing rule (B) results in a strictly larger fee income to the CCP than
(A) if, and only if,

F3G(Neore) > FAG({1,.., N}) (367)
& 78 (aue) (f(K) = f(K = 1))G(Neore) > =& (aue) f(K)ADLg(6,{1,., N})G({1,...,N}) (368)
ALY ;(fK()K =D G(Nore) > —ADL(S, {1,., NDG({1,., N}) (369)

f(K) — f(K-1) fK) = f(K=1)  w(6)f(1) §(accp) 1
ST O W) 2 Gl N TR Gf ) ) 7]

f(K) — f(K-1) B _ wi(8)f(1) &(acce) 1
And f(K) (G(MOTE) G({ler}))> G({L/N}) ka(K) g(‘xuc) T

f(K) — f(K-1) _ wi(8)f(1) E(accp) 1
@ T (G N = G(Neor)) < GU{1, . N =E S S (372)

(371)

_ T4k DiGily .
where H = E SO0, 3) | In the following, we use that

wi(8) = 8Gif (1) + (1 = 8)Gupef (1) < Gef (1), (373)
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(1) Let k € Nore. Then, using the properties of core-periphery networks,

H=E [ _ D DiO ] - S e (374)
wi(0) + Zjl\il,j;ék(l — Dj)w;(0) wi(0) + ijil,j;ék(l — Dj)w;(0)
err. DiGper NG
o !f(l)gﬁzj(glfwl\l}) -~ G N 7
Because k € Nyre, it is wi(8) = 6Georef(1). Therefore, Inequality (372) holds if
F) = FK=1) i1 Ny — G(Noare)) < SCaref (DS (D) lacep) 1 B nCrerG{L - NY) -

f(K) Georef (K) Slaue) ™ G({L..,N})f(1)

o 1K) ;(fK()K ~ U (6({1,., N}) = G(Noore) < ‘jf((;))gé‘z‘ofcﬁ) G (377)

f(K) — f(K—1) <2§]Gm+ N N =3+ 6Gper NN—3) 5f(1) &(accp)

=

2N
G (79)

f(K) 3 3 3 3 f(K) &lauc)
f(K) = f(K-1) 5f(1) &(accp)
<~ f(K) 4Gper < f(K) g(“uc) 2Gper (379)
f(K) = f(K=1) . f(1) &(accp)
TR AR ) (3%0)
f(K) - f(K - 1) g(“uc) éA
TTTFD e "2 (381)
(2) Letk e N, per- Then,
H=E [  StyuDiGm ] _ YNyt DiGper 82)
wi(0) + Zjlil,j;ék(l - Dj)wj(5) wi(0) + Zjlil,j;ﬁk(l - D]-)wk(é)
ZjGNmr\{k} DjGW” %nc;per
E = . 383
- [f(l) YN Gi({1,.., N} G{L...N}f(1) (383)

Because k € per, it is wk((§ ) = Gperf(1). Therefore, it is sufficient for Inequality (372) to hold
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if

A0, i < SO 1 B

o ;(fK()K “U(G({1,., N}) = G(Noare)) < Jf(([l()) gg(‘g‘ofcﬁ) 226, (385)

- M fi el S,

# S s <
Therefore, the CCP strictly prefers rule (B) over (A) if

(F(K) = F(K = 1)) E{ae) < max { T 2} FEacer). (389)

The LHS converges to zero for K — oo (using Lemma IA.2) and for a,, — 1 (using Lemma IA.1).
Therefore, there exist K < oo and &, < 1 such that the CCP strictly prefers rule (B) over (A) if
either K > K or &, > @&y, or both. O

Proposition 13 (Robust optimal clearing rule). If clearing rule (B) in Proposition 11 is strictly preferred
over (A), then only net-based loss sharing is robust to small perturbations in the following sense:

There exists a sequence (1) eN that converges to 0 and associates with the following sequence of core-
periphery networks:

® Each peripheral entity has the perturbed position Gﬁer = Gper + 1.

* Peripheral entities always centrally clear ny, independently of the clearing rule, and centrally clear

Gper if, and only if, the participation constraint is satisfied.
 Core entities use central clearing if, and only if, the participation constraint is satisfied.

(F*£,6%") denotes an optimal clearing rule for the (th perturbation. Then, (F*,5*) is a robust optimal
clearing rule for the original core-periphery network if F** — F* and 6** — §* for £ — o,

Proof. Consider clearing rule (B) associated with clearing members 0 = N,y and fee Fz. The
constraint (38) implies for the original network that peripheral entities strictly prefer not to become
clearing members. By continuity, there exists £ > 0 such that constraint (38) holds for all perturbed
networks with £ < /.
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Let ¢ < ¢ and consider the /-th perturbed network. Note that peripheral entities centrally clear

ny, but not Gpe,. Lemma 2 implies that the optimal fee is
F*' = —7tf(K)&(ayc)ADLy, (5%, %),

where I € Neope. Proposition 4 (b) implies that the impact of central clearing on a core entity’s
expected default loss, ADLy, is increasing with . Because the CCP’s profit is increasing with the

fee F*, it is optimal to maximize F** by minimizing é. Thus, 6** = 0 and, using Proposition 8,

fK-1) 2N/ 6n1y 1— 753 &(acce) £(1) 1. (390)

0\ _
ADL,(0,Q"") = f(K) (N=3)+6n, 1—m {(ay) f(K)

Therefore,

fim P = (1 =m0 | L 1] = 5

Therefore, (Fj,0) is the robust optimal clearing rule for the original core-periphery network.
t
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