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Abstract

Central clearing counterparties (CCPs) manage counterparty risk by requiring clear-
ing members to post margins. This paper explores the role of margins as “canaries in
the coal mine:” By inducing defaults of fragile counterparties before contract maturity,
margin calls enable CCPs to transfer these contracts to other counterparties, thereby
preserving risk sharing. Our model reveals a pecking order of CCP risk manage-
ment tools. When fragility is low, loss sharing among original counterparties suffices.
When fragility is high, such that defaults at contract maturity would trigger cascad-
ing failures among clearing members, the CCP optimally complements loss sharing
with margins. It is optimal to use margins as canaries when the balance sheets of
fragile counterparties are severely impaired. Our findings highlight the complemen-
tary nature of CCP risk management tools: margins, loss sharing, and counterparty
replacement.
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1 Introduction

Since the 2008 financial crisis, the architecture of the financial system has been recognized
as a central determinant of systemic risk. Post-crisis regulatory reforms established cen-
tral clearing counterparties (CCPs) as a cornerstone of global financial infrastructure. As
of 2024, about 80% of the notional outstanding of global over-the-counter (OTC) deriva-
tives were centrally cleared, representing more than $400 trillion.1 As a result, the func-
tioning of CCPs is now a fundamental cornerstone of derivative markets and crucial for
financial stability. At the same time, our understanding of how central clearing affects the
allocation of risk in financial markets remains limited.

In this paper, we provide a tractable model of risk sharing and central clearing and
characterize the three mechanisms through which CCPs manage risk: (i) margins, (ii)
counterparty replacement, and (iii) loss sharing. We show that margins (i.e., collateral that
clearing members must post to cover potential losses) are critical to CCP risk management
and complement counterparty replacement and loss sharing. Indeed, margins play a
significant role in practice. The total amount of margin held by CCPs exceeds $1.5 trillion,
with daily flows of more than $30 billion.2

The existing literature has emphasized the role of margins in ring-fencing assets, thereby
increasing resources available upon default and reducing counterparties’ default incen-
tives (Biais et al., 2016). We highlight another key function of margins as ’canaries in
the coal mine’: margin calls at interim dates can induce fragile counterparties to default
before contract maturity, allowing the CCP to replace these counterparties. The benefit
of early replacement is that the contracts can then be transferred to other counterparties
while risk sharing remains possible. This reduces the losses imposed on existing clearing
members and can prevent a crisis scenario in which the CCP is overwhelmed by default
losses at contract maturity. Overall, our results highlight the complementary nature of
margins, counterparty replacement, and loss sharing as risk management tools before
contract maturity.

In our model, risk-averse protection buyers hedge endowment risk by trading centrally-
cleared derivatives with risk-neutral protection sellers. The terms of the derivative con-
tract, including margin requirements and loss-sharing arrangements, are determined en-
dogenously from an optimal contracting problem. Following an interim signal about un-
derlying risks, some protection sellers become fragile due to privately observed shocks to
their balance sheets. Fragile counterparties may be unable to make contractual payments

1Source: BIS OTC derivatives statistics, available at https://data.bis.org/topics/OTC_DER.
2Source: CCP Global (2025) “Public Quantitative Disclosure PQD Quarterly Trends Report 2024 Q4

Data”.
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at maturity. If sufficiently many fragile sellers default, this can overwhelm the CCP’s ex-
post loss-sharing capacity, leading to cascading failures among clearing members—and
ultimately, CCP failure.

Our main result is that CCPs can prevent this scenario by using margin calls to screen
counterparties. In this case, margins are used to induce (rather than prevent) default.
Fragile sellers unable to meet margin requirements default, allowing the CCP to transfer
their positions to healthier counterparties. The advantage of early replacement is that it
preserves loss-absorbing capacity, preventing CCP failure.

In contrast, we show that it is not optimal to use margins when only a few clearing
members are fragile. In this case, loss sharing at the CCP suffices to maintain full risk
sharing: non-defaulting clearing members can absorb the losses of defaulting members
without defaulting themselves. Given that posting margins entails an opportunity cost,
it is optimal not to use them when they are not strictly necessary.

Only once fragility is more widespread are margins optimally used to enhance risk-
sharing capacity—either to ring-fence assets or as canaries. The traditional ring-fencing
role of margin preserves value by securing collateral from potential defaulters, reducing
deadweight losses when defaults occur at contract maturity. In contrast, the canary mar-
gins create value by revealing private information about counterparty fragility, enabling
dynamic reallocation of risk to those best able to bear it. Crucially, these two roles require
different margin levels: canary margins must be set high enough to induce defaults, while
ring-fencing margins are lower. When the balance sheets of fragile sellers are severely
impaired, the canary role dominates and the CCP optimally sets margins such that some
fragile clearing members default and are replaced.

Our model highlights the costs and benefits of the three principal risk management
tools employed by CCPs: margins, counterparty replacement, and loss sharing. The cen-
tral insight is that during a contract’s lifetime, these tools are complements rather than
substitutes: margin calls enable replacement by identifying fragile counterparties, while
sharing default losses increases the value of replacement. In contrast, at contract maturity
margins and loss sharing are substitutes because ring-fencing a larger share of defaulters’
assets reduces the default losses to be shared. Moreover, counterparty replacement at
contract maturity is not useful because the cost of replacement would at least equal the
cash flow due to be paid, leaving no scope for risk sharing. Early counterparty replace-
ment preserves risk-sharing opportunities because the final payment remains uncertain,
making market participants willing to provide insurance.

Hence, the efficiency of counterparty replacement depends critically on market con-
ditions and information structure. We identify three key determinants. First, replace-
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ment requires sufficient heterogeneity among market participants: replacement counter-
parties must have adequate resources to assume defaulted positions. Second, the timing
of fragility shocks matters due to the Hirshleifer (1971) effect—the more information re-
vealed about underlying risks, the less risk sharing replacement can provide. Early in-
tervention via canary margins is therefore more valuable than late intervention. Third,
replacement becomes more attractive when fragile sellers are severely impaired, as ring-
fencing provides limited value when counterparties have few assets to seize.

Our framework yields several testable predictions and policy implications. First, op-
timal margin requirements follow a pecking order: when fragile sellers are few, ex-post
loss sharing suffices and margins are unnecessary; for intermediate levels of fragility, ca-
nary margins that induce replacement can be optimal; when fragility is too widespread,
however, even replacement cannot maintain full insurance. Second, our model explains
why clearing member defaults often occur following margin calls rather than at contract
maturity, as observed in the 2018 default of power trader Einar Aas at Nasdaq Clearing.
Third, margin procyclicality—raising margins during stressed conditions—can be effi-
cient when it facilitates replacement, provided sufficiently healthy market participants
are available to absorb positions. This challenges the conventional view that procyclical
margins necessarily amplify systemic stress.

These findings have important implications for CCP regulation. Current policy de-
bates focus on calibrating margins to cover potential losses while avoiding destabilizing
procyclicality, but this perspective is incomplete: margins should also be evaluated for
their role in facilitating efficient counterparty replacement. Regulatory constraints that
cap margin increases during stress may inadvertently prevent optimal screening, poten-
tially increasing systemic risk. Moreover, CCP access to diverse replacement counterpar-
ties is crucial for financial stability—a consideration largely absent from current regula-
tory frameworks.

Our paper contributes to the literature on financial market architecture and systemic
risk (Allen and Gale, 2000; Zawadowski, 2013; Acemoglu et al., 2015) and frictions in
derivatives markets (Bolton and Oehmke, 2015; Biais et al., 2021; Allen and Wittwer,
2023). Specifically, our analysis shows how interim replacement of counterparties can
prevent financial contagion. Margin calls enable counterparty replacement by serving as
an ex-post screening device, relating our analysis to the literature on collateral as a screen-
ing device in financial markets (Bester, 1985; Besanko and Thakor, 1987). While this liter-
ature has focused on collateral as a screening device at contract origination, we show that
margins as canaries serve as ex-post screening devices after contracts have been entered.
The dynamic nature of canary margins generates additional considerations, such as the
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Hirshleifer effect. Our results also extend the traditional focus on collateral as a means
to raise borrowing capacity to finance investment (Holmstrom and Tirole, 1997; Rampini
and Viswanathan, 2010; Donaldson et al., 2020). Instead of focusing on borrowing capac-
ity, we highlight the use of margins to increase risk-sharing capacity.

Our paper is also related to the literature on CCPs as insurers of (counterparty) risk
(Acharya and Bisin, 2014; Biais et al., 2016; Capponi et al., 2022b; Cucic, 2022; Kuong and
Maurin, 2023). While these studies have mainly stressed that CCPs may require margins
to reduce default incentives, we highlight a distinct role: margins as a screening device
to separate fragile from safe counterparties.3 Other studies on CCPs have focused on the
role of netting and the demand for clearing (Duffie and Zhu, 2011; Kubitza et al., 2024;
Chebotarev, 2025) and settlement (Koeppl et al., 2012).

In practice, counterparty replacement is implemented via auctions. While we abstract
from auction design by assuming a competitive market for replacement, related work
studies the design features of CCP auctions (Vuillemey, 2023; Huang and Zhu, 2024).
Moreover, several empirical studies document the impact of central clearing on counter-
party risk and financial markets (Loon and Zhong, 2014; Boissel et al., 2017; Bernstein
et al., 2019; Vuillemey, 2020) as well as margining practices (Capponi et al., 2022a; Grothe
et al., 2023).4

2 Model

We develop a simple model of centrally cleared financial contracts used to hedge endow-
ment risk. A natural interpretation of these contracts is centrally cleared derivatives, for
example, swaps.

Model overview. There are three dates, t = 0, 1, 2. At t = 0, protection buyers enter
risk-sharing contracts (which we refer to as “derivatives”) with protection sellers. The
contracts are centrally cleared by a CCP. At t = 1, a signal regarding the likelihood that
a protection seller will have to make a payment on the derivative contract is observed.
At the same time, some protection sellers suffer an adverse shock to their balance sheets.
In response, the CCP can require sellers to post margin on their contracts. Sellers with
weak balance sheets may default on the interim margin call. If this happens, the CCP
can transfer these contracts to other counterparties. At t = 2, the derivative contracts

3In an extension with strategic defaults, we show that the roles of margins as screening and as incentive
device co-exist.

4See Menkveld and Vuillemey (2021) for a survey of the literature on central clearing.
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pay off, and protection sellers with weak balance sheets may default on their payment
obligations.

We now describe each element of the model in detail.

Protection buyers and sellers. There is a mass one of protection buyers and a cor-
responding mass of protection sellers. Protection buyers are identical, with a twice-
differentiable concave utility function u over consumption at t = 2. They face endow-
ment risk ẽ at t = 2. For simplicity, we assume that ẽ can only take one of two values:
e = 1 with probability π ∈ (0, 1) and e = 0 with probability 1 − π. The endowment risk ẽ
is the same for all protection buyers (i.e., it represents aggregate risk).

Protection buyers can purchase insurance against their endowment risk from risk-
neutral protection sellers. Each protection seller is endowed with one unit of an asset
(representing their “balance sheet”), whose payoff is realized at t = 2. There are two
types of assets: low and high quality. Asset quality is unknown at t = 0 and privately
revealed to protection sellers at t = 1, as specified in more detail below.

Interim information. At the beginning of t = 1, before margin calls are made and sell-
ers might default, a public signal s̃ about the endowment risk ẽ becomes available. For
example, if the risk ẽ stems from the oil price at t = 2, s̃ can be interpreted as the oil price
at t = 1. The signal is correct with probability λ,

λ = P(s | e) = P(s | e). (1)

Following Bayes Rule, the probability of a good endowment realization ē is then updated
to

π = P(e | s) =
λπ

λπ + (1 − λ)(1 − π)
or π = P(e | s) =

(1 − λ)π

(1 − λ)π + λ(1 − π)
. (2)

We assume that 1
2 < λ < 1, so that observing s is positive news, implying that π < π <

π < 1. The larger λ, the more informative the signal. The restriction that λ < 1 ensures
that the signal is not perfectly revealing.

Contracts, margins, and central clearing. Protection buyers and sellers enter a deriva-
tive contract at t = 0, which is centrally cleared by the CCP. Clearing transforms each
bilateral contract between one buyer and one seller into two cleared contracts: one be-
tween the seller and the CCP, specifying a transfer TS, and one between the CCP and the
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buyer, specifying a transfer TB. Positive transfers represent payments to the CCP. Nega-
tive transfers represent payments made by the CCP.

The contractual transfers TB and TS are agreed upon at t = 0 and realized at t = 2.
These transfers can be made conditional on all public information, including the realiza-
tions of the buyers’ endowment risk ẽ and the public signal s̃. Because the CCP is a coun-
terparty to every contract, it pools all transfers from buyers, sellers, and (if counterparties
default and are replaced at the interim date) outsiders. As a result, the transfer received
by protection buyer j does not depend on the transfer made by its original counterparty,
but on the transfers made by all clearing members, which determine the resources avail-
able to the CCP. Therefore, the transfers TS and TB can be interpreted as the total (net)
transfers jointly determined by the initial bilateral derivative contracts and pooling of
contracts at the CCP (in particular, loss sharing as described below).5

The CCP’s budget constraint requires that aggregate transfers to protection buyers are
matched by aggregate transfers from protection sellers and outside sellers in each state.
For example, if no protection seller defaults, the CCP’s budget constraint is given by

TB(s̃, ẽ) + TS(s̃, ẽ) = 0 ∀s̃, ẽ. (3)

Margins. In addition to the transfers TS and TB, the CCP can require that protection sell-
ers post some of their assets as margin at t = 1. The margin call can be made contingent
on all public information at t = 1 (i.e., the signal s̃). We denote the amount of high-quality
assets to be deposited in the margin account by α(s), s ∈ {s, s}. Because of their lower
value, a larger amount of low-quality assets is required to satisfy the margin call.

A margin call serves to ring-fence a fraction of sellers’ assets. Defaulting sellers lose
all posted margin, which is seized by the CCP and distributed among surviving clearing
members. However, posting margin is costly: assets in the margin account earn a lower
return, resulting in a per-unit opportunity cost of 1 − k. Therefore, the CCP makes a mar-
gin call only if doing so increases the CCP’s resources after accounting for the opportunity
cost of margins.

Defaults. Equilibrium payments by protection sellers are subject to default. Default
occurs when protection sellers are either unable to honor their payment obligations at

5For example, protection buyers might trade a credit default swap (CDS) with protection sellers, which
provides an insurance payment if the underlying defaults (state e). In turn, if the underlying does not
default, then protection buyers pay an insurance premium (state e). These payments are conditional on the
original’s counterparty survival. After centrally clearing the contract, transfers TB and TS to the CCP are
independent of the original counterparty’s survival. However, the transfers now include the contributions
to cover the CCP’s overall default loss in addition to the CDS insurance premium or payment.
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t = 2 or unable to fulfill their margin requirements at t = 1. Defaults imply the loss
of clearing membership and the termination of any existing derivative contracts. The
CCP can use the margin posted by defaulted sellers to make payments to other sellers
or buyers. In contrast, its access to defaulters’ balance sheets in excess of the margin
account is limited. Specifically, the CCP can recover only a fraction ρ ∈ (0, 1) of non-
collateralized assets from defaulters. The lower ρ, the lower is the CCP’s ability to enforce
its claim against defaulters’ non-collateralized assets. The remaining fraction 1 − ρ of
uncollateralized assets are lost, creating a deadweight cost of default.

While protection sellers are ex-ante identical, the value of their assets is subject to an
idiosyncratic shock at t = 1. We denote by R(s̃) > 0 the payoff of high-quality assets
conditional on the signal s̃. For simplicity, we assume that after a positive signal s̃ = s,
seller resources R(s) are sufficient to cover contractual derivative payments for all sellers.
There is therefore no default risk after a good signal.6 In contrast, after a negative signal
s̃ = s, there is counterparty risk. Specifically, we assume that a mass γ of sellers becomes
fragile because their assets turn out to be of low quality.7 This fragility shock reduces
the payoff of fragile sellers’ assets from R(s) to ϕR(s), where ϕ ∈ [0, 1). Assets of “safe”
sellers, which are not affected by the fragility shock, remain high-quality and continue
to pay R(s). We assume that R(s) > π, which ensures that safe sellers have sufficient
resources to write a frictionless full insurance contract. The realization of the fragility
shock is privately known to sellers but cannot be observed by the CCP. It is therefore not
feasible to write a contract conditional on seller type.

Contract replacement, outsiders, and loss sharing. When a protection seller defaults
on the margin call at t = 1, the CCP terminates the contract and proceeds to sell the posi-
tion of the defaulted clearing member to outsiders, who then replace the defaulted seller
as counterparties. Outsiders are not present at t = 0 and can therefore be interpreted as
clearing members (or other market participants) who do not specialize in trading deriva-
tive contracts on ẽ. To reflect this, we allow for the possibility that transferring defaulted
contracts to outside sellers generates a (deadweight) replacement cost of C ≥ 0 per con-
tract.8

6Relaxing this assumption would result in an additional resource constraint after the good signal. This
change would not affect our main results.

7Therefore, the informativeness of the signal λ reflects the correlation between seller fragility and infor-
mation about the derivative (e.g., the price of the underlying). If λ is high, sellers are more fragile when
the adverse endowment realization e becomes more likely. Correlation between counterparty fragility and
exposure to this counterparty is commonly referred to as wrong-way risk.

8In practice, this cost includes the cost of documentation and accreditation for clearing membership and
other replacement costs that arise when transferring defaulted derivative contracts to a new counterparty.
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Similar to the initial protection sellers, outside sellers are risk-neutral and have assets
that pay RO > 0 at t = 2.9 RO can be interpreted as reflecting aggregate financial condi-
tions at t = 1: the smaller RO, the lower the CCP’s ability to find suitable counterparties
to take over defaulted contracts. Because defaults at t = 1 occur after a negative signal
realization s, outsiders generally need to be compensated for taking on the expected lia-
bility associated with the open positions of a defaulted clearing member. Therefore, even
though defaulted counterparties can be replaced at t = 1, the CCP incurs a default loss
that must be borne by the surviving clearing members.

Equilibrium We consider equilibria that maximize the expected utility of protection
buyers, subject to the CCP’s budget constraints and sellers’ resource and participation
constraints. This is a natural outcome when the CCP maximizes the welfare of its mem-
bers (e.g., because the CCP is member-owned) and protection sellers are competitive.10

3 First Best: No Defaults

In this section, we consider the benchmark case in which protection seller resources are
abundant. In this case, there are no defaults and the first-best outcome is achieved. This
case serves as a benchmark for identifying inefficiencies that arise from limited resources
and defaults.

Because there are no defaults, no (costly) margins are used. There is also no need to
transfer contracts to outside sellers at t = 1. The derivative contract specifies transfers
from buyers and sellers to the CCP, TB and TS, to maximize buyers’ expected utility,

E[u(ẽ − TB(s̃, ẽ))], (4)

subject to the CCP’s budget constraint (3) and the sellers’ participation constraint. Given
no defaults and no margins, the sellers’ expected payoff upon entering the contract at
t = 0 is E[ϕ̃R(s̃)] − E[TS(s̃, ẽ)], where ϕ̃ denotes the fragility shock (equal to ϕ̃ = ϕ for
fragile sellers after observing s, and ϕ̃ = 1 otherwise) and R(s̃) is the asset payoff (equal

9In an extension, we consider an alternative setting without outside sellers. In this extension, all protec-
tion sellers are present from t = 0. At t = 1, sellers learn whether they are safe, regular, or fragile (i.e., there
are now three rather than two seller types at the interim date). Safe sellers then take the role of outsiders
and take over the defaulted contracts of fragile sellers.

10In our model, the CCP’s objective does not conflict with the planner’s objective. It is, therefore, not nec-
essary to model the CCP’s balance sheet beyond its margin account. Several prior studies analyze conflicts
of interest between CCPs and protection buyers (see Huang, 2018; Kuong and Maurin, 2023). It would be an
interesting avenue for future research to explore the interaction of such conflicts with contract replacement.

8



to either R(s) or R(s)). If sellers do not enter the contract, their expected payoff equals
E[ϕ̃R(s̃)]. The protection sellers’ participation constraint is therefore

E[TS(s̃, ẽ)] ≤ 0. (5)

Proposition 1 (First-best contract). When seller resources are abundant, the optimal contract
provides full insurance to protection buyers, is actuarially fair, and does not depend on the signal.
No margins are used, and outside sellers remain inactive. The transfers from buyers to the CCP
are given by

TB(s̃, e) = 1 − π and TB(s̃, e) = −π, (6)

and those from sellers to the CCP by

TS(s̃, e) = −(1 − π) and TS(s̃, e) = π. (7)

The first-best contract implements full insurance through transfers that effectively
move resources from buyers to sellers in the good state e and from sellers to buyers in
the bad state e. Transfers are such that buyers are fully insured: buyer consumption is
constant across states and equal to the expected endowment π. Note that the CCP is
superfluous in this case. The CCP’s sole role is to intermediate default-free payments
between buyers and sellers. Since all parties can meet their obligations, there is no coun-
terparty risk.

4 Central Clearing Without Replacement

We now consider the case in which protection sellers have limited resources. We first
examine contracts with default risk but without replacement of counterparties. We begin
by characterizing the transfers and margins after a positive signal at t = 1.

Proposition 2 (Full insurance and no margins after a positive signal). Conditional on a good
signal, s̃ = s, the optimal contract requires no margins and provides full insurance to protection
buyers: buyer consumption ẽ − TB(ẽ, s) is constant across all endowment realizations ẽ.

Conditional on a good signal, resources are abundant and the optimal contract there-
fore transfers the full endowment risk from buyers to sellers. Consequently, buyers’ final
consumption does not depend on the endowment realization. Given the absence of de-
faults after a good signal, it is optimal not to use margins because they would impose
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unnecessary costs (since k < 1). To simplify notation, in what follows we therefore de-
note by α the margin requirement after a bad signal (i.e., α := α(s)).11

After a bad signal, protection sellers may default. We first consider contracts for which
defaults do not occur along the equilibrium path.

No defaults. The sellers’ participation constraint requires that expected transfers com-
pensate for the opportunity cost of posting margin:

0 ≤ −P(s)α(1 − k)R(s)− E[TS]. (8)

To prevent default, the sellers’ resource constraints must be satisfied. The available re-
sources consist of the sellers’ initial assets that are not posted as margin as well as the
assets in their margin account. A margin call requires sellers to post α units of high-
quality assets as margin. Safe sellers can post high-quality assets to satisfy the margin
call. Fragile sellers, who do not have high-quality assets on their balance sheet, need to
post αR

ϕR = α
ϕ > α units of low-quality assets to satisfy the margin call. Sellers of type

j ∈ {S, F} do not default at t = 1 if their available resources are sufficient to cover the
margin call:

αR(s) ≤ ϕjR(s) =: t̄j,1, (9)

where ϕj ∈ {ϕ, 1} is the fragility shock suffered by sellers of type j.12

Sellers of type j do not default at t = 2 if their available resources t̄j,2 are sufficient to
make the contractual transfer TS(s, ẽ):

TS(s, ẽ) ≤
(

1 − α

ϕj

)
ϕjR(s)︸ ︷︷ ︸

Uncollateralized assets

+ αkR(s)︸ ︷︷ ︸
Margin account

=: t̄j,2. (10)

If fragile sellers are sufficiently unconstrained, the optimal contract implements un-
conditional full insurance at actuarially fair prices:

Proposition 3 (Full insurance without defaults). The first-best contract described in Proposi-

11While this section focuses on central clearing without replacement, Proposition 2 applies more gener-
ally to the cases with and without replacement of fragile sellers.

12In our model, defaults are driven by limited resources. In an extension, we show that the results natu-
rally extend to a setting with strategic defaults, in which defaults are driven by default incentives.
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tion 1 can be implemented if and only if the fragility shock is not too severe:

ϕR(s) ≥ π. (11)

In the case of Proposition 3, the resources of fragile sellers are sufficiently large to
ensure that they do not default. Therefore, there is sufficient risk-sharing capacity to im-
plement the first-best full insurance contract. In the following, we focus on situations
in which fragile sellers are constrained, such that the first-best contract cannot be imple-
mented.

Assumption 1. Fragile sellers’ resources are sufficiently limited such that the first-best contract
is not feasible: ϕR(s) < π.

When the first-best contract is not feasible, there are two options. The first is to write
a partial insurance contract that prevents default. The second is to write a full insurance
contract that involves default in some states. We now consider each in turn.

Partial insurance without defaults. When the transfers under the first-best contract ex-
ceed fragile sellers’ resources, one option is to prevent default by reducing the insur-
ance payment made by sellers. To ease notation, in what follows we denote by u(s̃, ẽ) =
u(ẽ − TB(s̃, ẽ)) the buyer’s utility in state (s̃, ẽ).

Proposition 4 (Partial insurance without defaults). Under Assumption (1), the optimal con-
tract when fragile sellers do not default provides partial insurance to buyers, with full insurance
except in the worst state (s, e):

u(s, e) < u(s, e) = u(s, e) = u(s, e). (12)

Fragile sellers’ resource constraint (10) is binding in state (s, e) at t = 2. No margin is used, and
the contract is actuarially fairly priced.

The contract in Proposition 4 prevents fragile sellers from defaulting by reducing the
transfers sellers are required to make. This reduction in seller transfers implies that the
contract provides only partial insurance to buyers. Margins are not used because, through
their opportunity cost, they reduce the resources available to sellers who do not default
in equilibrium.

Full insurance with defaults. Instead of preventing fragile sellers from defaulting, it
can be optimal to allow fragile sellers to default. Due to the pooling of contracts within
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the CCP, safe sellers step in to make the contractual payments of defaulted fragile sellers.
This loss-sharing arrangement is priced into the contract ex ante via the sellers’ participa-
tion constraint. In addition, the CCP can use assets seized from defaulting sellers to make
contractual payments. While the CCP can seize all margin posted by defaulted sellers,
due to enforcement frictions it can seize only a fraction ρ of defaulting sellers’ uncollat-
eralized assets. Therefore, when fragile sellers default in state (s, e) at t = 2, the CCP’s
budget constraint in this state is

TB(s, e) + (1 − γ)TS(s, e)︸ ︷︷ ︸
Surviving (safe) sellers

+ γ

[
αkR(s) + ρ

(
1 − α

ϕ

)
ϕR(s)

]
︸ ︷︷ ︸

Defaulting (fragile) sellers

= 0. (13)

In all other states, the CCP’s budget constraint is given by Equation (3), as before.
When fragile sellers default, they lose all their assets. Therefore, the sellers’ participa-

tion constraint becomes

E[ϕ̃R(s̃)] ≤ P(s) (R(s)− E[TS | s])︸ ︷︷ ︸
No defaults after a positive signal

+ (1 − γ)P(s) (R(s)− E[TS | s]− (1 − k)αR(s))︸ ︷︷ ︸
Safe sellers: no defaults

+ γP(s) (P(e | s)(ϕR(s)− TS(s, e)− (1 − k)αR(s)) + P(e | s) · 0)︸ ︷︷ ︸
Fragile sellers: defaults in state (s, e)

, (14)

which, after rearranging, yields

0 ≤ −E[TS]− P(s)(1 − k)αR(s) + γP(s, e) (TS(s, e) + ((1 − k)α − ϕ)R(s)) . (15)

Equation (15) shows that sellers require compensation for the opportunity cost of posting
margin and the deadweight costs arising from defaults. The resource constraint at t = 1
remains the same as before and is given by Equation (9).

Proposition 5 (Full insurance with defaults at t = 2). Under Assumption (1) and if the mass
of fragile sellers is sufficiently small,

γ ≤ R(s)− π

R(s)(1 − (P(s, e)(1 − ρ) + ρ)ϕ)
=: γNR, (16)

the optimal contract with defaults of fragile sellers in state (s, e) provides full insurance to buyers.
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If

P(s, e)γ(1 − ρ) < P(s)(1 − k), (17)

then margins are not used and the markup paid by buyers compensates for the deadweight cost of
defaults: E[TB] = m = γP(s, e)(1 − ρ)ϕR(s). No sellers default at t = 1.

Condition (17) captures the trade-off in using margins. On one hand, margins re-
duce the deadweight cost of default, which arises because the fraction 1 − ρ of non-
collateralized assets is lost in default. A larger margin requirement reduces this efficiency
loss in state (s, e) for the mass γ of fragile sellers. However, posting margins imposes an
opportunity cost 1 − k on all sellers after a negative signal. When Condition (17) holds,
this opportunity cost effect dominates and margins are not used.

Proposition 5 shows that, even if fragile sellers default at t = 2, safe sellers can still
provide full insurance to buyers. This is possible if safe sellers have sufficient resources,
which is the case if the mass of defaulting sellers is not too large (Condition (16)). If
the mass of defaulting sellers is too large, safe sellers’ balance sheets are not sufficient to
absorb the default losses in state (s, e). If this were the case, the contract in Proposition
5 would lead to contagious defaults: Defaults by fragile sellers would trigger a second
round of defaults by safe sellers, as the loss sharing required to implement full insurance
would exceed safe sellers’ resources.

Partial insurance with defaults. In the following, we assume that the mass of fragile
sellers is large, such that safe sellers cannot absorb all losses from defaults of fragile sellers
under the full-insurance contract. In this situation, writing the full-insurance contract
would lead to cascading defaults: the defaults of fragile sellers would overburden the
safe sellers, causing them to default as well. The CCP would fail.

Assumption 2. Assume that γ > γNR, such that full insurance is not resource compatible
without replacement of fragile sellers.

Proposition 6 (Partial insurance with defaults at t = 2). Under Assumption (2), the opti-
mal contract when fragile sellers default in state (s, e) provides partial insurance to buyers. The
contract is not actuarially fair but entails a markup paid by buyers to sellers of

m = P(s)(1 − k)αR(s)︸ ︷︷ ︸
Opportunity cost of margins

+ γP(s, e)
(

ϕ − α − ρ

(
1 − α

ϕ

)
ϕ

)
R(s)︸ ︷︷ ︸

Net deadweight loss from defaults

. (18)
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If margins are used as part of the optimal contract, the margin call is determined by the first-order
condition

u′(s, e)P(s)(1 − k) =u′(s, e)P(s, e)γ(1 − ρ)

+ (u′(s, e)− u′(s, e))P(s, e)(γ(k − ρ)− (1 − γ)(1 − k)). (19)

Fragile sellers do not default at t = 1 if and only if α ≤ ϕ.

The optimal margin requirement determined by Equation (19) trades off the opportu-
nity cost of posting margin (left-hand side) with the benefits of margins (right-hand side).
Margins are potentially beneficial for two reasons. First, they reduce the deadweight cost
of defaults by ring-fencing assets early on. Specifically, a one-unit increase in α reduces
the deadweight-cost component in the markup, ϕ − α − ρ(1 − α/ϕ)ϕ, by 1 − ρ. Second,
margins can increase the CCP’s available resources after a negative signal. On the one
hand, a larger margin requirement increases the recoverable resources from fragile sellers
by γ(k− ρ) per unit, which is positive if the return on margins exceeds the CCP’s recovery
rate on defaulters’ assets, k > ρ. On the other hand, a larger margin reduces the available
resources provided by safe sellers by (1 − γ)(1 − k) (see Equation (10)). Margins increase
resources in state (s, e) if the first effect dominates. This is the case if there are sufficiently
many fragile sellers, γ > 1−k

1−ρ .
The following proposition compares the two partial insurance contracts analyzed above.

These contracts differ in whether fragile sellers default at t = 2. We show that it is optimal
to let fragile sellers default if they are very fragile (i.e., when ϕ is low, making their assets
severely impaired).

Proposition 7 (Partial insurance with and without defaults). The optimal contract with de-
faults of fragile sellers at t = 2 provides strictly more expected utility to buyers than that without
defaults when fragile sellers are sufficiently impaired, ϕ < ϕ∗, where ϕ∗ > 0.

5 Central Clearing with Replacement

This section presents the main results of our analysis. We characterize contracts in which
the CCP replaces fragile sellers at the interim date t = 1. Since the CCP cannot distinguish
between safe and fragile sellers, it must induce sellers to reveal their type. This is accom-
plished through a margin call at t = 1 that causes fragile sellers (but not safe sellers) to
default on their contracts. The defaulting sellers are then replaced by outsiders, who take
over the defaulted contracts for a fee.
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Analogous to defaults at t = 2, the CCP holds a claim on the assets of sellers that
default at t = 1. This claim equals the expected transfer E[TS | s] (i.e., the mark-to-
market value of the contract at t = 1). We assume that, to satisfy its claim, the CCP
can seize a fraction ρ of a defaulted seller’s uncollateralized assets, leading to a payoff
of min{ρϕR(s), E[TS | s]}. In what follows, we assume that ϕ is sufficiently low such
that ρϕR(s) ≤ E[TS | s], which implies that the CCP incurs a default loss. The remaining
fraction 1− ρ of the defaulting seller’s assets is lost, resulting in a deadweight default cost
of (1 − ρ)ϕR(s) at t = 1.

Contracts of defaulted sellers are transferred to outsiders. This means that outsiders
take over the contractual payment obligation TS in return for a fee of p. In addition,
counterparty replacement generates an exogenous replacement cost C.

Including net transfers made by outsiders and replacement costs, the CCP’s budget
constraint following a bad interim signal and the default and replacement of fragile sellers
becomes

TB + (1 − γ)TS + γρϕR(s)︸ ︷︷ ︸
Resources from

defaulters

+ γTS − γ(p + C)︸ ︷︷ ︸
Additional resources

from replacement

= 0. (20)

Outsiders are willing to enter the contract if the payment they receive exceeds the
expected transfer,

p ≥ E[TS | s]. (21)

In equilibrium, this participation constraint binds, so that outsiders receive a fee of p =

E[TS | s].
Protection sellers’ ex-ante participation constraint takes into account the possibility of

default at t = 1, which means that, with probability P(s)γ, no transfers are made but
sellers’ assets are lost:

0 ≤ −E[TS] + P(s)γ (E[TS | s]− ϕR(s))− P(s)(1 − γ)(1 − k)αR(s). (22)

This constraint shows that, in addition to expected transfer payments, sellers are com-
pensated for losing their assets upon default at t = 1, P(s)γϕR(s), and for the expected
opportunity cost of posting margin, P(s)(1 − γ)(1 − k)αR(s).

Using the CCP’s budget constraint and the participation constraints for protection sell-
ers and outsiders, we now derive the transfers for contracts that fully insure the buyers’
endowment risk.
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Proposition 8 (Full insurance transfers with replacement of fragile counterparties). The
transfers of a full insurance contract with default by fragile sellers at t = 1 are given by

TS(s, e) = −(1 − π)− m (23)

TS(s, e) = π − m (24)

TS(s, e) = −(1 − π)− m + LCCP (25)

TS(s, e) = π − m + LCCP. (26)

The contract is not actuarially fair but entails a markup paid by buyers to sellers of

m := E[TB] = P(s)(γC + γ(1 − ρ)ϕR(s) + (1 − γ)(1 − k)αR(s)), (27)

and the CCP’s default loss after the bad signal is given by

LCCP := γ(p + C − ρϕR(s)) = γ
π − π − m + C − ρϕR(s)

1 − γ
. (28)

Proposition 8 shows that, under full insurance with interim default and replacement,
the contractual transfers for sellers can be decomposed into three components. The first
component is a frictionless insurance contract against the endowment risk ẽ, where sellers
pay π or receive 1 − π depending on the endowment realization. The second component
is a constant markup m that buyers pay to sellers. The markup compensates sellers for the
deadweight replacement cost C, the deadweight default cost (1 − ρ)ϕR(s) per defaulted
seller, and the opportunity cost of posting margin (1 − k)αR(s) per surviving seller. The
third component is a loss-sharing contribution that sellers make to cover the CCP’s de-
fault loss LCCP after a bad signal realization.

The CCP’s default loss equals the cost of replacing defaulted sellers, which comprises
the payment to outsiders p and the deadweight replacement cost C, net of the assets
recovered from defaulted sellers by the CCP, ρϕR(s). Equation (28) shows that the default
loss is larger when the signal is more informative (i.e., when π − π is large). The net
transfers made by outsiders that take over defaulted contracts are equal to TS − p, which
corresponds to a frictionless insurance contract against ẽ conditional on a bad signal, with
a net transfer of π or −(1 − π). Therefore, the more informative the interim signal, the
less additional risk sharing is provided by outsiders. Equation (28) also shows that the
default loss is smaller when the CCP can recover more assets from defaulted sellers (i.e.,
ρ is larger, assuming that fragile sellers are left with some assets after the fragility shock,
ϕ > 0).
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The full insurance contract described above requires fragile sellers to default at t = 1,
since replacement is otherwise impossible. The interim margin call is crucial for achieving
this: it induces fragile (but not safe) sellers to default by setting margin requirements that
only fragile sellers cannot meet, enabling the CCP to replace fragile counterparties. The
margin therefore serves as a canary in the coal mine that reveals hidden fragility among
clearing members before contract maturity when replacement is still possible.

Fragile sellers default at t = 1 if the margin requirement exceeds their resources, as
described by Equation (9).13 Therefore, fragile sellers default at t = 1 when the fraction
of assets to be posted as margin exceeds the fragility shock:

α > ϕ. (29)

Because posting margin entails an opportunity cost, it is optimal to set the lowest margin
that induces the sellers to default at t = 1. Therefore, it is optimal to set the margin to just
exceed ϕ:

α∗ := inf{α : α > ϕ}. (30)

Note that the role of margins differs depending on whether defaults occur at t = 1 or
t = 2. As shown in the previous section, when defaults occur at t = 2, margins reduce the
deadweight cost of default by ring-fencing assets for the CCP. However, this mechanism
does not apply when defaults occur at t = 1, since defaults occur before margin is posted.
Instead, the role of margins at t = 1 is to induce fragile sellers to default, thereby enabling
counterparty replacement.

The optimal transfers are chosen to provide full insurance to buyers, anticipating the
replacement of fragile sellers via a margin call of α∗ at t = 1.

Proposition 9 (Full insurance with replacement of fragile counterparties). The optimal con-
tract with default and replacement of fragile sellers at t = 1 provides full insurance if

γ ≤ γR. (31)

It is γR ∈ (0, 1) if ϕ < ϕR, with ϕR > 0.

13Fragile sellers might want to prevent posting margins by selling their positions to outsiders after a
negative signal but before the margin call at t = 1. This possibility can be ruled out by assuming that
fragile sellers’ assets are not sufficient to compensate outsiders, namely that ϕR(s) < E[TS | s].
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The optimal margin, which incentivizes fragile sellers to default at t = 1, is given by

α = α∗ = ϕ. (32)

The outsiders’ resources are sufficient if, and only if, RO ≥ π. This condition is satisfied if
RO ≥ π.

Proposition 9 demonstrates that when the economy contains a sufficiently small pro-
portion of sellers (γ ≤ γR), the full-insurance contract with replacement and defaults at
t = 1 is optimal and resource-compatible for sellers.

Because the contract’s present value changes following the interim signal, defaults
generate losses for the CCP, which are absorbed by safe sellers. If the mass of fragile
sellers were too large (γ > γR), safe sellers would lack the capacity to absorb these default
losses, rendering the full-insurance contract resource-incompatible.

Outsiders can fulfill their contractual payments if their resources exceed the insurance
payment required for full insurance conditional on the negative signal, π. Since π < π,
outsiders need fewer resources than safe sellers would require. Consequently, it suffices
for outsiders to possess at least the same level of resources as safe sellers.

Proposition 9 also establishes a condition ensuring that the threshold on γ is econom-
ically meaningful. This requires a sufficiently severe fragility shock (small ϕ). Under this
condition, safe sellers can provide insurance against seller’s endowment risk and absorb
the CCP’s default losses even when only a negligible fraction of sellers defaults. In the
absence of this condition, two degenerate cases emerge: replacement becomes either uni-
versally infeasible across all γ ∈ (0, 1) due to insufficient resources among safe sellers, or
universally feasible due to high asset recovery rates (high ϕ).

The optimal margin α∗ equals the fragility shock ϕ. This highlights the role of margins
as canaries in the coal mine: the smaller the difference between fragile and safe sellers, the
larger the optimal margin required to distinguish between seller types.

We now investigate the conditions under which the optimal contract with replace-
ment (characterized by Propositions 8 and 9) provides greater utility than the contract
without early replacement of fragile counterparties. Although replacement improves risk
sharing, it is not unambiguously efficient. First, the risk sharing provided by outsiders
is constrained by the Hirshleifer effect: outsiders can provide insurance only after in-
formation about the endowment risk has been revealed. Second, replacement of fragile
counterparties is costly: it requires safe sellers to post margins and triggers default and
replacement costs. Consequently, a contract without early default and replacement may
provide greater utility to buyers.
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To assess the efficiency of replacement, we assume that the full-insurance contract
with replacement is feasible on the interval (0, γR]:

Assumption 3. Assume that ϕ < ϕR and π ≤ RO.

We are now in a position to compare the optimal contracts with and without replace-
ment.

Proposition 10 (Efficiency of Counterparty Replacement).

(1) If C < Ĉ, the contract with counterparty replacement enables full insurance for a larger
fraction of fragile sellers (γNR < γR), where Ĉ > 0.

(2) If γNR < γ ≤ γR and mR − mNR ≤ gNR, counterparty replacement is efficient, where
mR and mNR denote the markups with and without replacement, respectively, and gNR > 0
denotes the consumption risk premium under the optimal contract without replacement.

The first part of Proposition 10 shows that replacement increases the CCP’s risk-sharing
capacity when deadweight replacement costs C are sufficiently small. Specifically, we
compare the maximum proportion of fragile sellers γ for which full insurance can be
achieved without replacement (γNR) with the corresponding threshold with replacement
(γR). When replacement costs C are small, replacement allows the CCP to implement
full risk sharing for a larger proportion of fragile counterparties: γNR < γR. This result
highlights the key benefit of replacement: transferring contracts from fragile sellers to
outsiders generates additional risk sharing and thereby reduces the loss-sharing burden
on safe sellers.

The second part of Proposition 10 shows that when the mass of fragile sellers γ lies in
the interval (γNR, γR] and the markup with replacement is sufficiently small, replace-
ment of fragile counterparties is efficient. In this case, the optimal contract with re-
placement implements greater risk sharing (full insurance) than the contract without re-
placement (partial insurance). The markup with replacement mR is composed of dead-
weight replacement costs C, default costs (1− ρ)ϕR(s), and opportunity costs of margins
(1 − k)αR(s) (see Proposition 8). In contrast, without replacement, the markup mNR is
either equal to zero because no seller defaults or it is composed of default costs and op-
portunity costs of margins. Therefore, the markup without replacement may be lower
especially when no sellers default or margin requirements are low. Nonetheless, risk-
averse buyers are willing to pay a strictly positive premium gNR > 0 to eliminate the
consumption risk that is present in the absence of replacement. Thus, replacement is ef-
ficient when the markup differential mR − mNR is smaller than gNR, as in this case the
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risk-sharing benefits outweigh the additional costs. This condition is trivially satisfied
when the markup differential is negative.14

In contrast, when there are few fragile sellers (γ ≤ γNR), replacement is inefficient.
In this case, the optimal contract without replacement already provides full insurance,
making replacement unnecessary since it would only add costs without improving risk
sharing. Therefore, it is efficient to forgo replacement and rely on ex-post loss sharing at
t = 2.

Figure 1: Full Insurance Pecking Order.
The figure plots the transfers TS(s, e) made by sellers to the CCP after a negative signal in state (s, e) on
contracts that provide full insurance (y-axis) against the ex-ante probability γ of sellers to become fragile at
t = 1 (x-axis). The dashed line represents the maximum transfer t̄S,2 that safe sellers are able to make. The
solid line represents transfers without replacement. It exceeds t̄S,2 for γ > γNR, in which case the contract
is not feasible. The line with diamonds represents transfers with replacement. It exceeds t̄S,2 for γ > γR,
in which case the contract is not feasible. In the interval (0, γNR] full insurance without margins is feasible
without replacement and, thus, replacement is not efficient. In the interval (γNR, γR] full insurance without
margins is feasible only with replacement.

Figure 1 illustrates the resulting pecking order of full-insurance contracts. On the
interval [0, γNR], it is optimal to rely on ex-post loss sharing among surviving clearing
members to implement full insurance. On the interval (γNR, γR], full insurance with re-
placement is efficient provided that the risk-sharing benefit exceeds the required contract
markup. When γ > γR, safe sellers lack sufficient resources to implement full insurance
with replacement and absorb the resulting default losses, so risk sharing must be reduced
to prevent safe sellers from defaulting at t = 2.

14If deadweight replacement costs C are small and the CCP’s recovery rate ρ is high, the markup with
replacement may be smaller than without replacement. This occurs because only safe sellers post margin,
reducing the opportunity costs of margin.
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We illustrate this pecking order of contracts in the following example, focusing on the
case of very fragile sellers.

Example 1 (Very fragile sellers). We consider the case where ϕ = 0 (i.e., fragile sellers lose all
their assets due to the fragility shock) and C = 0 (i.e., there are no deadweight costs of replace-
ment). In this case,

γR =
R(s)− π

R(s)− π
(33)

and γNR =
R(s)− π

R(s)
. (34)

If γNR < γ ≤ γR, the optimal contract with replacement and defaults at t = 1 is resource-
compatible and dominates the optimal contract without replacement.

Example 1 illustrates that replacement at t = 1 is efficient when there are sufficiently
many fragile sellers (high γ) and both fragile sellers’ default costs ϕ and deadweight
replacement costs C are sufficiently small. In this case, replacement enables the CCP to
provide full insurance to protection buyers with a modest margin requirement and, there-
fore, a small markup. The optimal contract without replacement provides only partial
insurance to buyers and is dominated by the contract with replacement.

The example also highlights that the maximum default risk for which full insurance is
feasible, γNR, is increasing in π, implying that a more informative signal at t = 1 (which
decreases π) reduces the benefits of replacement by limiting the scope for risk sharing.
To formalize this insight, the following proposition examines more generally how signal
informativeness affects the value of counterparty replacement.

Proposition 11 (Signal informativeness). The additional risk-sharing capacity achieved by re-
placement, γR − γNR, is decreasing in signal informativeness λ.

Signal informativeness determines the strength of the Hirshleifer (1971) effect: the
more information revealed about ẽ, the more sensitive the value of the derivative con-
tract becomes to the signal. This implies that π − π is larger, leading to more limited
risk sharing with outsiders. This effect is visible in the CCP’s default loss upon a bad
signal, which increases with signal informativeness and therefore requires a larger contri-
bution from original sellers to loss sharing (see Proposition 8). In Proposition 11, we show
that the Hirshleifer (1971) effect impairs the CCP’s risk-sharing capacity: the less risk can
be shared with outsiders, the smaller the maximum incentive-compatible proportion of
fragile sellers γR that ensures incentive compatibility of replacement. Therefore, coun-
terparty replacement is most useful as an early intervention tool (i.e., before a full-blown
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crisis) and in situations in which the fragility shock that hits counterparties is imperfectly
correlated with the value of their derivative positions (see Section 6.2 for a more detailed
discussion).

6 Discussion and Policy Implications

CCPs manage counterparty default risk using three tools: margins, replacement, and loss
sharing. In the following, we discuss the implications of our results for each of these.

6.1 Margin Setting by CCPs

Our model highlights a novel role of margin requirements as canaries in the coal mine. It
is useful to briefly reflect on the key differences and similarities between the two economic
roles of margins: as ring-fenced collateral versus as an early intervention mechanism to
replace counterparties.15

Margins as ring-fencing. Conventional wisdom views margins as a tool to increase the
resources available to CCPs in the event that some clearing members default. For exam-
ple, Hull (2012, p. 30) describes the role of margins as follows: “The whole purpose of
the margining system is to ensure that funds are available to pay traders when they make
a profit.” According to this view, margins enable the CCP to seamlessly seize collateral
from defaulted counterparties, thereby increasing the resources available to pay those
who are owed payments.

Note, however, that seizing collateral improves outcomes only in cases where uncol-
lateralized loss-sharing arrangements are insufficient to make counterparties whole. As
long as safe clearing members can provide sufficient resources to the CCP, loss sharing
among clearing members ensures that contractual payments are made, even when frag-
ile clearing members default. This is the case as long as there are not too many fragile
clearing members (γ ≤ γNR in Figure 1). In this case, margins are not needed.

In contrast, when there are sufficiently many fragile clearing members (γ > γNR in
Figure 1), default losses exceed the surviving clearing members’ resources and it becomes
beneficial to use margins. By ring-fencing some of the defaulters’ assets, margins increase

15The literature has discussed a third role of margins: reducing incentives to default. As shown by Biais
et al. (2016), this “incentive role” of margins emerges when clearing members are subject to a moral hazard
problem in managing their default risk. Because of the absence of moral hazard in our framework, this
incentive role does not arise in our model.
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the resources the CCP can seize from defaulters and reduce the deadweight costs resulting
from defaults.

Margins as canaries. Alternatively, the CCP can increase resources by replacing frag-
ile clearing members with less fragile clearing members before contractual payments are
due. Clearing membership requirements partly achieve this goal by ensuring that clear-
ing members exhibit low observable default risk, such as a high credit rating. However,
changes in credit quality are usually reflected in ratings only with a significant time lag
and, at high frequency, remain unobservable to the CCP.

Employing margins as canaries in the coal mine overcomes this obstacle. A sufficiently
large margin call identifies fragile clearing members by forcing them to default. Because
these defaults occur before contract maturity, the CCP can replace fragile clearing mem-
bers with new counterparties, thereby increasing the CCP’s resources. CCPs acknowl-
edge this value of using margins as canaries: “While sufficient time should be granted
to avoid unnecessary liquidity strains for market participants to meet the ITD [intraday]
margin calls, allowing excessive time for them to arrange funding may impede the timely
identification of a default. This is particularly true when a CM is experiencing solvency
issues and struggling to meet collateral requirements, potentially leading to a default.”16

As with the ring-fencing role of margins, using a margin call as a canary is not required
when loss sharing among safe clearing members generates sufficient resources for the
CCP to honor contractual payments (γ ≤ γNR in Figure 1). In contrast, when the CCP’s
resources are constrained, it can be efficient to use canary margins.

To induce defaults, margin requirements must be sufficiently large. This implies that
canary margins generally exceed ring-fencing margins, resulting in higher opportunity
costs. In addition, using margins as canaries leads to deadweight costs resulting from
the defaults of fragile clearing members. Therefore, the total costs of canary margins can
exceed those of margins used to ring-fence collateral. However, these additional costs
can be outweighed by the benefits of replacement, namely that outside sellers provide
additional risk-sharing capacity. This benefit is particularly large when, at the time of the
fragility shock, relatively little information about the underlying risk has been revealed
(low λ), as outsiders can only insure risks that have not yet materialized.

Distinguishing ring-fencing and canary margins. In general, ring-fencing margins and
canary margins differ in two key dimensions: canary margins are larger and are explicitly

16CCP Global, Re “CPMI-IOSCO Report on Streamlining variation margin in centrally cleared markets-
examples of effective practices”, 13 May, 2024
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designed to trigger defaults. While clearing member defaults are infrequent events, recent
defaults have indeed been associated with margin calls rather than payments at contract
maturity.17

The relative effectiveness of these margin types depends on the degree of counterparty
fragility. When clearing members retain substantial balance sheet capacity, ring-fencing
margins efficiently secure collateral without triggering defaults. However, when balance
sheets become severely impaired—precisely when ring-fencing becomes ineffective due
to insufficient collateralizable resources—canary margins become the optimal tool. Even
relatively small margin requirements will induce fragile counterparties to default, en-
abling their replacement with better-capitalized outsiders. Thus, the CCP’s optimal mar-
gin strategy shifts from ring-fencing to screening as counterparty fragility increases.

Initial and variation margin. Practitioners distinguish between two types of margin
requirements. Initial margin is based on the risk (e.g., volatility or Value-at-Risk) of the
position as well as the default risk of the counterparty. Initial margin is posted at initial
contracting and can be updated throughout the life of the contract. Variation margin is
based on the market value of the contract (often zero at inception) and is usually adjusted
on a daily basis.

In the context of our model, variation margin at t = 1 equals the expected liability
arising from the original (bilateral) derivative contract, which equals the expected total
net transfers less the loss-sharing contributions:

VM1 = E[TS | s]− LCCP = π − π − m. (35)

Under the contract with replacement, the canary margin equals ϕ.18 Therefore, when
fragile counterparties are sufficiently impaired (ϕ ≤ π − π − m), variation margin alone
is sufficient to trigger their default at t = 1. Otherwise, an additional initial margin
is needed to induce default and replacement of fragile counterparties. Combining both
cases, the total initial margin demanded at t = 1 to trigger replacement of fragile coun-
terparties is given by

IM1 = max{ϕ − (π − π − m), 0}. (36)

This initial margin can be interpreted as a credit risk add-on that is required only af-
ter some sellers have suffered a fragility shock. However, unlike the conventional ring-

17See Section 6.2 for an example.
18More precisely, the margin is arbitrarily close to ϕ, see Equation (30).
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fencing role of margins, this margin in the contract described in Section 5 functions as a
screening device to induce default and enable replacement of fragile sellers with healthier
counterparties.

Procyclicality. Policymakers are concerned about margin procyclicality, namely that
larger margins during turbulent times may trigger defaults when other market partici-
pants are also more fragile.19 Our model suggests a more nuanced perspective on this
concern. First, higher margins can be a means for CCPs to deal with fragility of clearing
members by enabling replacement. However, an important precondition is that alterna-
tive counterparties (“outsiders”) are sufficiently unconstrained (RO ≥ π). Thus, the ef-
fects of procyclicality depend on the heterogeneity of fragility across market participants.
Procyclical margins can be detrimental if all market participants are fragile, but beneficial
when some market participants remain safe.

Second, the effectiveness of counterparty replacement depends on how correlated a
fragility shock to clearing members is with the risks of the contracts cleared by the CCP.
Replacement counterparties are less willing to insure endowment risk when more in-
formation about this risk has been revealed (i.e., λ is high). This is likely a particular
concern during crisis times (e.g., credit default swaps during the 2008 global financial cri-
sis). Accordingly, procyclical margins are more likely to be beneficial as a tool for early
intervention rather than in the midst of a crisis.

Overall, our analysis therefore suggests that optimal margin-setting policies should
account for both the heterogeneity of market participants and the information environ-
ment when evaluating procyclical adjustments.

6.2 Counterparty Replacement

A key result of our analysis is that default and subsequent replacement of counterpar-
ties can improve risk sharing and prevent cascading defaults of clearing members. To
demonstrate the practical relevance of this insight, we now briefly discuss how counter-
party replacement is implemented in practice.

CCP rules. CCP rules prescribe the conditions that trigger the default of a clearing mem-
ber and the procedures to be followed in the event of defaults. In particular, if a clearing
member is (or appears to be) unable to meet its obligations to the CCP (such as posting

19For example, see the final report on the “Review of the RTS with respect to the procyclicality of CCP
margin” of the European Securities and Markets Authority (2023).
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margin), the CCP may terminate the clearing membership (i.e., put the clearing member
into default). In the event of such a default, the CCP can take several steps to neutralize
the defaulter’s positions. One of these is to enter offsetting positions or to transfer the
defaulter’s positions to an alternative counterparty, which replaces the defaulted coun-
terparty and effectively takes the role of the “outsiders” in our model.

This replacement mechanism occurs regularly in practice. For example, in 2018, the
Swedish clearinghouse Nasdaq Clearing AB declared the power trader Einar Aas in de-
fault after he failed to post required margins. The CCP then conducted an auction to
transfer the trader’s positions to a new counterparty–essentially implementing the coun-
terparty replacement mechanism that our model shows can improve overall risk shar-
ing.20

The timing of counterparty replacement. Our model shows that the benefits of replace-
ment crucially depend on the timing of defaults and replacement. In our framework, this
corresponds to interpreting the informativeness of the signal λ as capturing the proximity
to contract maturity. The earlier fragile counterparties default, the larger the remaining
scope for risk sharing. In the extreme case where fragile counterparties default at con-
tract maturity (equivalent to λ = 1), replacement is not useful because outsiders would
be willing to enter the contract only if they were paid exactly the cash flow that is due
to be paid by them. Instead, when replacement occurs before contract maturity, the final
payment remains risky and thus outsiders are willing to provide insurance against this
risk.

Moreover, replacement is more beneficial when relatively unconstrained outsiders are
available to take on the positions of defaulted clearing members (RO ≥ π). Only then is it
possible for outsiders to absorb the positions of defaulters without increasing their own
default risk. Thus, replacement is most useful when defaults by fragile counterparties
are idiosyncratic and uncorrelated with the constraints of other market participants. If
outsiders are constrained exactly when fragile sellers default, replacement is less likely
to improve outcomes. This suggests that the effectiveness of canary margins depends
critically on market-wide stress conditions.

20See https://view.news.eu.nasdaq.com/view?id=b342623f1e259ec1892c5e1763ad7de15&lang=en, https:
//www.finanstilsynet.no/en/news-archive/news/2018/nasdaq-clearing-ab-default-of-clearing-member/, and
https://www.bis.org/publ/qtrpdf/r_qt1812x.htm for the Einar Aas default. Similarly, Klein and Co. Fu-
tures, Inc. failed to meet a margin call to the New York Clearing Corporation (NYCC), with liquidation
expenses leading to a default loss of approximately $6 million (as described in ICE’s 10-Q filing from July
2007). See McPartland and Lewis (2017) for examples of other clearing member defaults.

26

https://view.news.eu.nasdaq.com/view?id=b342623f1e259ec1892c5e1763ad7de15&lang=en
https://www.finanstilsynet.no/en/news-archive/news/2018/nasdaq-clearing-ab-default-of-clearing-member/
https://www.finanstilsynet.no/en/news-archive/news/2018/nasdaq-clearing-ab-default-of-clearing-member/
https://www.bis.org/publ/qtrpdf/r_qt1812x.htm


6.3 Loss sharing

Finally, our analysis provides some perspectives on default losses and how they are
shared within a CCP.

Default losses and the default waterfall. If the market value of the contracts to be trans-
ferred is negative, the counterparties that take on these contracts need to be compensated
for the (negative) value of these positions. Therefore, when the CCP transfers a defaulter’s
positions to new counterparties, the CCP usually incurs a default loss. In our model, this
default loss is increasing in π − π, which is larger the more informative the signal at
t = 1. This loss reflects the Hirshleifer effect: more informative signals reduce the in-
surance that outsiders can provide, increasing the compensation they require to assume
defaulted positions.

CCPs absorb default losses according to a predetermined default waterfall. First, the
defaulter’s resources, such as previously posted collateral, are used to the extent that the
CCP can access them. Second, the CCP typically provides a layer of its own equity to
absorb additional losses. Our model abstracts away from the CCP’s equity contribution,
which is typically small in practice.21 All remaining default losses are then absorbed by
the surviving clearing members through loss-sharing arrangements. This loss sharing is
the focus of our theoretical analysis.

Loss sharing rules. In our model, default losses should optimally be allocated to risk-
neutral protection sellers, who are better positioned to bear risk than risk-averse pro-
tection buyers and thus willing to insure them against the risk of CCP default losses.
This allocation principle provides a benchmark for evaluating actual CCP loss-sharing
arrangements.

In practice, the counterparties that are best able to bear this risk are typically dealers
with large balance sheets. However, current loss-sharing mechanisms often imply the
opposite. For example, some CCPs assign losses proportionally to net exposures. Dealers
acting as intermediaries often have close-to-zero net exposure, so that they contribute
little to loss sharing relative to the size of their portfolios.22

21Kuong and Maurin (2023) show that when the interests of CCPs and their members are not perfectly
aligned, equity provides incentives for CCPs to monitor counterparty risk. Our model abstracts from such
agency conflicts by assuming the CCP maximizes member welfare, allowing us to focus on the screening
role of margins.

22Kubitza et al. (2024) highlight a related point driven by a different mechanism. They show that allocat-
ing default losses to end-investors rather than dealers reduces incentives to use central clearing. They also
provide a model that highlights a CCP’s incentives to assign losses to end-investors in order to attract large
clearing volumes from dealers.
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7 Conclusion

This paper reveals that margin requirements at central clearing counterparties serve a
critical but previously unrecognized function: they act as canaries in the coal mine, in-
ducing early defaults that enable the replacement of fragile counterparties while risk-
sharing capacity remains available. Thus, rather than merely securing collateral to cover
losses, margins create value by revealing hidden fragility and facilitating the dynamic
reallocation of risk to those best able to bear it. Our model demonstrates that optimal
margin policy requires balancing multiple objectives and, in particular, preserving sys-
temic risk-sharing capacity and enabling efficient counterparty replacement. This insight
is particularly relevant for understanding margin procyclicality: higher margins during
stressed periods may enhance rather than impair financial stability when they facilitate
the substitution of weaker counterparties with stronger ones.

Our findings have broad implications for the post-crisis financial architecture that
places CCPs at the center of derivatives markets. The effectiveness of central clearing de-
pends not only on the CCP’s ability to mutualize losses among surviving members, but
critically on its capacity to identify and replace weak counterparties before their failure
triggers systemic distress. This perspective suggests that regulatory frameworks should
consider not just the level of margins and default resources, but also the diversity and
depth of potential replacement counterparties available to CCPs. As derivatives markets
continue to evolve and CCPs assume ever-greater systemic importance, understanding
the optimal design of central clearing is essential for financial stability.
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A Proofs

A.1 First Best

Proof of Proposition 1. Without abundant resources, the optimal contract maximizes expected util-

ity of buyers (4) subject to the participation constraint of protection sellers (5) and the CCP’s bud-

get constraints (3). The first-order conditions are

− P(s̃, ẽ)u′(s̃, ẽ) + η(s̃, ẽ) = 0 ∀s̃, ẽ (A.1)

− P(s̃, ẽ)ξ + η(s̃, ẽ) = 0 ∀s̃, ẽ, (A.2)

where η(s̃, ẽ) is the Lagrange multiplier on the budget constraint (3) in state (s̃, ẽ) and ξ that on the

participation constraint (5). Using the second set of first-order conditions in the first yields

− P(s̃, ẽ)u′(s̃, ẽ) + P(s̃, ẽ)ξ = 0 (A.3)

⇔u′(s̃, ẽ) = ξ. (A.4)

Therefore, the participation constraint is binding and buyer utility is constant across states, i.e.,

buyers are fully insured. This implies

ẽ(s̃, ẽ)− TB(s̃, ẽ) = E[ẽ]︸︷︷︸
=π

−E[TB] ∀s̃, ẽ. (A.5)

The budget constraints (3) jointly with the binding participation constraint (5) imply that

E[TB] = 0, (A.6)
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i.e., the contract is actuarially fair. Therefore, full insurance implies the following transfers from

buyers

1 − TB(s̃, e) = π ⇔ TB(s̃, e) = 1 − π (A.7)

and 0 − TB(s̃, e) = π ⇔ TB(s̃, e) = −π (A.8)

and from sellers (using the budget constraints)

TS(s̃, e) = −TB(s̃, e) = −(1 − π) (A.9)

and TS(s̃, e) = −TB(s̃, e) = π. (A.10)

Neither using margins nor outside sellers can improve risk sharing. Because both are costly, it is

optimal to not use them.

A.2 Central Clearing Without Replacement

A.2.1 Without Defaults

Proof of Proposition 2. The optimal contract maximizes expected buyer utility (4) subject to the par-

ticipation and resource constraints of protection sellers and the CCP budget constraints. Because

sellers do not default conditional on a good signal, their participation constraint is given by

E[ϕ̃R(s̃)] ≤P(s)E[(1 − α(s))R(s) + α(s)kR(s)− TS(s, ẽ) | s] + P(s)E[ f1(s, ẽ) | s] (A.11)

where f1(s, ẽ) is a function of transfers and margins conditional on a bad signal, TS(s, ẽ) and α(s).
The CCP’s budget constraints conditional on a good signal are

TS(s, ẽ) + TB(s, ẽ) = 0 ∀ẽ, (A.12)

whereas the budget constraints conditional on a bad signal do neither depend on TS(s, ẽ), TB(s, ẽ),
nor α(s). Similarly, resource constraints after a negative signal s do neither depend on TS(s, ẽ),
TB(s, ẽ), nor α(s).

The partial derivative of the Lagrangian with respect to α(s) is −P(s)(1 − k)ξR, where ξ is

the multiplier on the participation constraint. Due to a binding participation constraint (shown

below), it is −P(s)(1 − k)ξR < 0, and, therefore, no margin is used after a good signal: α(s) = 0.

The first-order conditions with respect to TB(s, ẽ) and TS(s, ẽ), respectively, are

− P(s, ẽ)u′(s, ẽ) + η(s, ẽ) = 0 (A.13)

η(s, ẽ)− ξP(s, ẽ) = 0, (A.14)
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where η(s, ẽ) is the Lagrange multiplier on the budget constraint in state (s, ẽ).
Re-arranging (A.13) and (A.14) gives

− P(s, ẽ)u′(s, ẽ) + ξP(s, ẽ) = 0 (A.15)

⇔ξ = u′(s, ẽ). (A.16)

Therefore, u′(s, e) = u′(s, e), which implies that

ẽ − TB(ẽ, s) = E[ẽ − TB(ẽ, s)] ∀ẽ. (A.17)

Proof of Proposition 3. The optimal contract maximizes expected buyer utility (4) subject to the

CCP’s budget constraints (3), and the participation constraint (8) and resource constraints (9)

and (10) of protection sellers. Therefore, the partial derivatives of the Lagrangian with respect

to TB(s̃, ẽ), TS(s̃, ẽ), and α, respectively, are

− P(s̃, ẽ)u′(s̃, ẽ) + η(s̃, ẽ), (A.18)

η(s̃, ẽ)− ξP(s̃, ẽ)− (σS,2 + σF,2)1(s̃,ẽ)=(s,e), (A.19)

− ξP(s)(1 − k)R(s)− (σS,2 + σF,2)(1 − k)R(s)− (σS,1 + σF,1), (A.20)

where η(s̃, ẽ) is the Lagrange multiplier on the budget constraint in state (s̃, ẽ), σj,t that on the

resource constraint for sellers of type j at time t, and ξ that on the participation constraint.

Risk sharing We focus on an equilibrium in which no resource constraint is binding, σj,t = 0.

In this case, (A.20) implies that there is no interior solution for α but, instead, there is no margin

call: α = 0. For an interior solution, (A.18) and (A.19) are equal to zero. Combining these yields

− P(s̃, ẽ)u′(s̃, ẽ) + ξP(s̃, ẽ) = 0 (A.21)

⇔u′(s̃, ẽ) = ξ. (A.22)

Therefore, the participation constraint is satisfied with equality and buyer consumption is inde-

pendent of the signal and endowment risk realization, ẽ − TB = E[ẽ − TB].

Transfers The budget constraints (3) imply that

E[TB] = −E[TS], (A.23)
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which we use in the participation constraint (8):

0 = −E[TS] = E[TB]. (A.24)

Using this above and that E[ẽ] = π · 1+ (1−π) · 0 = π gives the transfers of the first-best contract

in Proposition 1.

No defaults at t = 1 Because ϕF < ϕS = 1, if the resource constraint (9) is satisfied for fragile

sellers, it also holds for safe sellers. Because α = 0 and ϕF ≥ 0, it is α ≤ ϕF and, thus, there are no

defaults at t = 1.

No defaults at t = 2 Because ϕF < ϕS = 1, available resources at t = 2 are smaller for fragile

sellers: t̄F,2 < t̄S,2. Therefore, if the resource constraint (10) is satisfied for fragile sellers, it also

holds for safe sellers. Because TS(s, e) ≤ TS(s, e) it is sufficient that

TS(s, e) ≤ t̄F,2 = ϕR(s), (A.25)

which, using the optimal transfer, is equivalent to

π ≤ ϕR(s). (A.26)

Proof of Proposition 4. We consider an equilibrium in which the resource constraint (10) at t = 2 for

fragile sellers is binding. Because ϕF < ϕS, safe sellers have access to more resources and, thus, the

resource constraint is not binding for safe sellers. We assume that resources at t = 1 are sufficient

such that there are no early defaults.

Risk sharing Consider the first order conditions from the proof of Proposition 3. (A.19) then

implies

η(s, e)− ξP(s, e)− σF,2 = 0 (A.27)

and η(s̃, ẽ)− ξP(s̃, ẽ) = 0 ∀(s̃, ẽ) ̸= (s, e). (A.28)

Therefore, combining with (A.18) yields

ξ =
η(s̃, ẽ)
P(s̃, ẽ)

= u′(s̃, ẽ) ∀(s̃, ẽ) ̸= (s, e) (A.29)
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and, thus,

η(s, e)− u′(s, e)P(s, e)− σF,2 = 0 (A.30)

⇔σF,2 = η(s, e)− u′(s, e)P(s, e) (A.31)

⇔σF,2 = P(s, e)(u′(s, e)− u′(s, e)). (A.32)

Due to σF,2 > 0, it is u′(s, e) > u′(s, e) and, therefore, using the concavity of the utility function,

u(s, e) < u(s, e).

Optimal margin Using the above in the first order condition for α (A.20) gives

− ξP(s)(1 − k)R(s)− σF,2(1 − k)R(s) (A.33)

=− [ξP(s) + σF,2] (1 − k)R(s) < 0, (A.34)

which is strictly negative due to ξ > 0 and σF,2 > 0. Thus, the optimal contract uses no margin.

Transfers The participation constraint (8) implies that E[TS] = −P(s)α(1 − k)R = 0, using that

α = 0. Using the CCP’s budget constraints (3), this implies that E[TB] = 0. Due to the binding

resource constraint (10), the transfer in (s, e) is given by

TS(s, e) = ϕR(s) = t̄F,2. (A.35)

(A.29) implies that

1 − TB(s, e) = 1 − TB(s, e) = −TB(s, e), (A.36)

which, using the budget constraints (3) implies that

1 + TS(s, e) = 1 + TS(s, e) = TS(s, e). (A.37)

Therefore,

E[TS | s] = P(e | s)TS(s, e) + P(e | s)TS(s, e) (A.38)

= π(−1 + TS(s, e)) + (1 − π)TS(s, e) (A.39)

= TS(s, e)− π. (A.40)
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The participation constraint (8) then implies that

0 = E[TS] (A.41)

= P(s)E[TS | s] + P(s)E[TS | s] (A.42)

= P(s)(TS(s, e)− π) + P(s, e)TS(s, e) + P(s, e)TS(s, e) (A.43)

= P(s)(TS(s, e)− π) + P(s, e)t̄F,2 + P(s, e)(TS(s, e)− 1) (A.44)

= (1 − P(s, e))TS(s, e)− P(s, e) + P(s, e)t̄F,2 − P(s, e) (A.45)

= (1 − P(s, e))TS(s, e)− P(e) + P(s, e)t̄F,2 (A.46)

⇔ TS(s, e) =
π − P(s, e)t̄F,2

1 − P(s, e)
. (A.47)

Together with (A.101), this yields

TS(s, e) = TS(s, e) = TS(s, e)− 1 (A.48)

=
P(e)− P(s, e)t̄F,2

1 − P(s, e)
− 1 (A.49)

=
−P(s, e)− P(s, e)t̄F,2

1 − P(s, e)
. (A.50)

No defaults at t = 1 Because α = 0, there are no defaults at t = 1.

A.2.2 With Defaults

Proof of Proposition 5. If fragile sellers default in (s, e), the optimal contract maximizes expected

buyer utility (4) subject to the CCP’s budget constraints (3) and (13), and the participation con-

straint (15) and the resource constraints at t = 1 (9) and that of safe sellers at t = 2 (10). The

derivatives of the Lagrangian with respect to TB(s̃, ẽ), TS(s̃, ẽ), and α, respectively, are

(∂TB(s̃, ẽ)) − P(s̃, ẽ)u′(s̃, ẽ) + η(s̃, ẽ) ∀(s̃, ẽ) (A.51)

(∂TS(s, e)) (1 − γ)η(s, e)− ξP(s, e)(1 − γ)− σS,2 (A.52)

(∂TS(s̃, ẽ)) η(s̃, ẽ)− ξP(s̃, ẽ) ∀(s̃, ẽ) ̸= (s, e) (A.53)

(∂α) ξ (−P(s)(1 − k) + P(s, e)γ(1 − k)) R(s) + η(s, e)γ(k − ρ)R(s)

− σS,2(1 − k)R(s)− (σ1,F + σ1,S)R(s), (A.54)

where η is the Lagrange multiplier on the budget constraint, σj,t that on the resource constraint for

type j ∈ {S, F} at time t, and ξ that on the participation constraint.

Assume that no resource constraint is binding, i.e., σj,t ≡ 0.
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Risk sharing For an interior solution with σj,t ≡ 0, (A.51), (A.52), and (A.53) all hold with

equality and jointly imply that

ξ =
η(s̃, ẽ)
P(s̃, ẽ)

= u′(s̃, ẽ) ∀(s̃, ẽ). (A.55)

Therefore, buyers are fully insured.

Optimal margin (A.54) is then equal to

ξ (−P(s)(1 − k) + P(s, e)γ(1 − k)) R(s) + η(s, e)γ(k − ρ)R(s) (A.56)

=ξ [(−P(s)(1 − k) + P(s, e)γ(1 − k)) + P(s, e)γ(k − ρ)] R(s) (A.57)

=ξ [−P(s)(1 − k) + P(s, e)γ(1 − k + k − ρ)] R(s) (A.58)

=ξ [−P(s)(1 − k) + P(s, e)γ(1 − ρ)] R(s), (A.59)

which is strictly negative if, and only if,

P(s, e)γ(1 − ρ) < P(s)(1 − k). (A.60)

We assume in the following that this condition holds and, thus, α = 0.

Transfers The budget constraints imply that

E[TB] + E[TS] + P(s, e)γ(ρϕR(s)− TS(s, e)) = 0. (A.61)

Using this in the binding participation constraint yields

0 = −E[TS]− P(s)(1 − k)αR(s) + γP(s, e) (TS(s, e) + ((1 − k)α − ϕ)R(s)) (A.62)

⇔0 = E[TB]− (P(s)− P(s, e)γ)(1 − k)αR(s)− γP(s, e)(1 − ρ)ϕR(s) (A.63)

⇔E[TB] = (P(s)− P(s, e)γ)(1 − k)αR(s) + γP(s, e)(1 − ρ)ϕR(s) =: m. (A.64)

Full insurance implies that

ẽ − TB(s̃, ẽ) = E[ẽ − TB] = π − m (A.65)

and, thus, (using the budget constraints)

1 − TB(s̃, e) = π − m (A.66)

⇔− TB(s̃, e) = π − 1 − m (A.67)

⇔TS(s̃, e) = −(1 − π)− m (A.68)
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and

0 − TB(s, e) = π − m (A.69)

⇔TS(s, e) = π − m (A.70)

and

0 − TB(s, e) = π − m (A.71)

⇔(1 − γ)TS(s, e) + γρϕR(s) = π − m (A.72)

⇔TS(s, e) =
π − m − γρϕR(s)

1 − γ
= π − m +

γ

1 − γ
(π − m − ρϕR(s)). (A.73)

(No) Defaults at t = 2 Using (10), fragile sellers default at t = 2 if, and only if,

TS(s, e) > ϕR(s) (A.74)

⇔π − m − γρϕR(s)
1 − γ

> ϕR(s) (A.75)

⇔π − γP(s, e)(1 − ρ)ϕR(s)− γρϕR(s)
1 − γ

> ϕR(s) (A.76)

⇔π − γ(P(s, e)(1 − ρ) + ρ)ϕR(s)
1 − γ

> ϕR(s) (A.77)

⇔π − γ(P(s, e)(1 − ρ) + ρ)ϕR(s) > (1 − γ)ϕR(s) (A.78)

⇔π > [(1 − γ) + γ(P(s, e)(1 − ρ) + ρ)]ϕR(s) (A.79)

⇔π > [1 − γ(1 − ρ − P(s, e)(1 − ρ))]ϕR(s) (A.80)

⇔π > [1 − γ(1 − ρ)(1 − P(s, e))]︸ ︷︷ ︸
<1

ϕR(s), (A.81)

which holds because Assumption (1) implies that π > ϕR(s).
Safe sellers do not default at t = 2 if, and only if,

TS(s, e) ≤ R(s) (A.82)

⇔π − γ(P(s, e)(1 − ρ) + ρ)ϕR(s)
1 − γ

≤ R(s) (A.83)

⇔π − γ(P(s, e)(1 − ρ) + ρ)ϕR(s) ≤ (1 − γ)R(s) (A.84)

⇔γ(1 − P(s, e)(1 − ρ)ϕ − ρϕ)R(s) ≤ R(s)− π (A.85)

⇔γ ≤ R(s)− π

R(s)(1 − (P(s, e)(1 − ρ) + ρ)ϕ)
=: γNR, (A.86)
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where, in the last step, we use that

1 − (P(s, e)(1 − ρ) + ρ)ϕ > 0 (A.87)

⇔1 > (P(s, e)(1 − ρ) + ρ)︸ ︷︷ ︸
<1

ϕ︸︷︷︸
<1

. (A.88)

Because T(s, e) < 0, there are no defaults in state (s, e).

No defaults at t = 1 Because α = 0, there are no defaults at t = 1.

Proof of Proposition 6. Consider an interior solution for TS, TB, and α, such that the first order condi-

tions (A.51) to (A.54) are all equal to zero. Due to Assumption (2), safe sellers’ resource constraint

(10) is binding in equilibrium and, thus, TS(s, e) = R(s)− (1 − k)αR(s) and σS,2 > 0.

Risk sharing (A.53) together with (A.51) imply that

ξ =
η(s̃, ẽ)
P(s̃, ẽ)

= u′(s̃, ẽ) ∀(s̃, ẽ) ̸= (s, e), (A.89)

which implies that u(s̃, ẽ) = u(s, e) for all states (s̃, ẽ) ̸= (s, e). (A.52) gives

(1 − γ)η(s, e)− ξP(s, e)(1 − γ) = σS,2 (A.90)

⇔(1 − γ)(P(s, e)u′(s, e)− u′(s, e)P(s, e)) = σS,2 (A.91)

⇔(1 − γ)P(s, e)(u′(s, e)− u′(s, e)) = σS,2, (A.92)

and, thus, using the concavity of u(·), it is u(s, e) < u(s, e) = u(s, e) = u(s, e).

Transfers The participation constraint (15) is binding in equilibrium, which implies that

0 = −E[TS]− P(s)(1 − k)αR(s) + γP(s, e) (TS(s, e) + ((1 − k)α − ϕ)R(s)) (A.93)

⇔P(s)(1 − k)αR(s)− γP(s, e)((1 − k)α − ϕ)R(s) = −E[TS] + γP(s, e)TS(s, e), (A.94)

which together with the budget constraints (3) and (13) implies that

E[TB] + E[TS]− P(s, e)γ
(

TS(s, e)− αkR(s)− ρ

(
1 − α

ϕ

)
ϕR(s)

)
= 0 (A.95)

⇔E[TB] = −E[TS] + γP(s, e)
(

TS(s, e)− αkR(s)− ρ

(
1 − α

ϕ

)
ϕR(s)

)
(A.96)

⇔E[TB] = P(s)(1 − k)αR(s)− γP(s, e)((1 − k)α − ϕ)R(s)− γP(s, e)
(

αkR(s) + ρ

(
1 − α

ϕ

)
ϕR(s)

)
⇔E[TB] =

[
(P(s)− γP(s, e))(1 − k)α + γP(s, e)

(
ϕ − αk − ρ

(
1 − α

ϕ

)
ϕ

)]
R(s) =: m, (A.97)
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i.e., the price of the contract is not actuarially fair but there is a markup that compensates for the

cost of posting margin and for the deadweight cost of defaults. This markup is equal to

m =

(
P(s)(1 − k)α + γP(s, e)

(
ϕ − α − ρ

(
1 − α

ϕ

)
ϕ

))
R(s). (A.98)

The transfer in (s, e) is determined by the binding resource constraint (10):

T(s, e) = (1 − α)R(s) + αkR(s) = t̄S,2. (A.99)

The result on risk sharing above implies that

1 − TB(s, e) = 1 − TB(s, e) = −TB(s, e), (A.100)

which, using the budget constraints (3) implies that

1 + TS(s, e) = 1 + TS(s, e) = TS(s, e). (A.101)

Therefore,

E[TS | s] = P(e | s)TS(s, e) + P(e | s)TS(s, e) (A.102)

= π(−1 + TS(s, e)) + (1 − π)TS(s, e) (A.103)

= TS(s, e)− π. (A.104)
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The participation constraint (15) then implies that

γP(s, e)TS(s, e)− P(s)(1 − k)αR(s) + γP(s, e)((1 − k)α − ϕ)R(s)− m

+

[
(P(s)− γP(s, e))(1 − k)α + γP(s, e)

(
ϕ − αk − ρ

(
1 − α

ϕ

)
ϕ

)]
R(s) = E[TS]

(A.105)

⇔γP(s, e)
(

TS(s, e)− αkR(s)− ρ

(
1 − α

ϕ

)
ϕR(s)

)
− m = E[TS] (A.106)

= P(s)E[TS | s] + P(s)E[TS | s] (A.107)

= P(s)(TS(s, e)− π) + P(s, e)TS(s, e) + P(s, e)TS(s, e) (A.108)

= P(s)(TS(s, e)− π) + P(s, e)t̄S,2 + P(s, e)(TS(s, e)− 1) (A.109)

= (1 − P(s, e))TS(s, e)− P(s, e) + P(s, e)t̄S,2 − P(s, e) (A.110)

= (1 − P(s, e))TS(s, e)− P(e) + P(s, e)t̄S,2 (A.111)

⇔ TS(s, e) =
P(e)− P(s, e)t̄S,2 − m + P(s, e)γ

(
t̄S,2 − αkR(s)− ρ

(
1 − α

ϕ

)
ϕR(s)

)
1 − P(s, e)

(A.112)

⇔ TS(s, e) =
P(e)− P(s, e)((1 − γ)t̄S,2 + γ(αk + ρ

(
1 − α

ϕ

)
ϕ)R(s))− m

1 − P(s, e)
. (A.113)

Together with the result on risk sharing, this yields

TS(s, e) = TS(s, e) = TS(s, e)− 1 (A.114)

=
P(e)− P(s, e)((1 − γ)t̄S,2 + γ(αk + ρ

(
1 − α

ϕ

)
ϕ)R(s))− m

1 − P(s, e)
− 1 (A.115)

=
−P(s, e)− P(s, e)((1 − γ)t̄S,2 + γ(αk + ρ

(
1 − α

ϕ

)
ϕ)R(s))− m

1 − P(s, e)
. (A.116)

Optimal margin The derivative of the Lagrangian with respect to α is given by (A.54), which

is equal to

ξ (−P(s)(1 − k) + P(s, e)γ(1 − k)) R(s) + η(s, e)γ(k − ρ)R(s)− σS,2(1 − k)R(s) (A.117)

=u′(s, e) (−P(s)(1 − k) + P(s, e)γ(1 − k)) R(s) + P(s, e)u′(s, e)γ(k − ρ)R(s)− σS,2(1 − k)R(s)

=u′(s, e) (−P(s)(1 − k) + P(s, e)γ(1 − k)) R(s) + P(s, e)u′(s, e)γ(k − ρ)R(s)− σS,2(1 − k)R(s)

=u′(s, e) (P(s, e)γ(1 − ρ)− P(s)(1 − k)) R(s) + P(s, e)(u′(s, e)− u′(s, e))(γ(k − ρ)− (1 − γ)(1 − k))R(s)
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and, thus, an interior optimum for the margin requirement is reached if, and only if,

u′(s, e)P(s)(1 − k) =u′(s, e)P(s, e)γ(1 − ρ)

+ (u′(s, e)− u′(s, e))P(s, e)(γ(k − ρ)− (1 − γ)(1 − k)). (A.118)

(No) Defaults at t = 2 Safe sellers do not default at t = 2 as their resource constraint (10)

is satisfied with equality. Fragile sellers default in state (s, e) at t = 2 if, and only if, (using the

binding resource constraint of safe sellers at t = 2)

TS(s, e) > ϕR(s)− (1 − k)αR(s) (A.119)

⇔R(s)− (1 − k)αR(s) > ϕR(s)− (1 − k)αR(s) (A.120)

⇔R(s) > ϕR(s) (A.121)

⇔1 > ϕ, (A.122)

which holds by assumption.

No defaults at t = 1 Using the resource constraint (9), fragile sellers do not default at t = 1 if

α ≤ ϕ, (A.123)

which, due to ϕ < 1, is sufficient to ensure no defaults of safe sellers.

Proof of Proposition 7. Consider the set of resource-compatible contracts with defaults of fragile

sellers at t = 2 in state (s, e) and suppose that Assumption 2 holds. If α = 0, then the markup is

m = γP(s, e)(1 − ρ)ϕR(s) and the transfer in (s, e) is equal to TS(s, e) = R(s)− m, which provides

buyers with the following consumption:

0 − TB(s, e) = (1 − γ)TS(s, e) + γρϕR(s) (A.124)

= (1 − γ)(R(s)− m) + γρϕR(s) (A.125)

= (1 − γ)R(s)− γ((1 − γ)P(s, e)(1 − ρ)− ρ)ϕR(s). (A.126)

In contrast, the optimal contract without defaults has α = 0, m = 0, and TS(s, e) = ϕR(s),
which provides buyers with the following consumption:

0 − TB(s, e) = TS(s, e) (A.127)

= ϕR(s). (A.128)

Both contracts provide partial insurance with u(s, e) < u(s̃, ẽ) for all (s̃, ẽ) ̸= (s, e). Consider

the case that ϕ = 0. Then, the markup for both contracts is m = 0. Therefore, the contract with

42



defaults provides more risk sharing if, and only if,

(1 − γ)R(s) > 0, (A.129)

which holds due to γ < 1. The result follows from continuity in ϕ.

A.3 Central Clearing with Replacement

Proof of Proposition 8. The budget constraints (3) and (20) imply that

E[TB] + E[TS] + P(s)γρϕR(s)− P(s)γ(E[TS | s] + C) = 0 (A.130)

⇔E[TB]− P(s)γC + P(s)γρϕR(s) = −E[TS] + P(s)γE[TS | s]. (A.131)

Using this in the binding participation constraint (22) yields

0 = −E[TS] + P(s)γE[TS | s]− P(s)γϕR(s)− P(s)(1 − γ)(1 − k)αR(s) (A.132)

⇔0 = E[TB]− P(s)γC + P(s)γρϕR(s)− P(s)γϕR(s)− P(s)(1 − γ)(1 − k)αR(s)

⇔0 = E[TB]− P(s)γC − P(s)γ(1 − ρ)ϕR(s)− P(s)(1 − γ)(1 − k)αR(s)

⇔E[TB] = P(s)(γC + γ(1 − ρ)ϕR(s) + (1 − γ)(1 − k)αR(s)) =: m, (A.133)

where m is the markup of the contract.

Full insurance implies that ẽ − TB(s̃, ẽ) ≡ E[ẽ − TB(s̃, ẽ)], where the right hand side is equal to

π · 1 + (1 − π) · 0 − m. Thus,

1 − TB(s̃, e) = π − m (A.134)

and 0 − TB(s̃, e) = π − m. (A.135)

Using the CCP’s budget constraints, this implies that

1 + TS(s, e) = π − m (A.136)

0 + TS(s, e) = π − m (A.137)

1 + TS(s, e)− γ(E[TS | s] + C − ρϕR(s)) = π − m (A.138)

TS(s, e)− γ(E[TS | s] + C − ρϕR(s)) = π − m. (A.139)
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Taking the P(· | s)-weighted sum of the last two equations yields

P(e | s) + E[TS | s]− γ(E[TS | s] + C − ρϕR(s)) = π − m (A.140)

⇔P(e | s) + (1 − γ)E[TS | s] = π − m + γ(C − ρϕR(s)) (A.141)

⇔E[TS | s] =
π − π − m + γ(C − ρϕR(s))

1 − γ
. (A.142)

Therefore, transfers are given by

TS(s, e) = −(1 − π)− m (A.143)

TS(s, e) = π − m (A.144)

TS(s, e) = −(1 − π) + γ

(
π − π − m + γ(C − ρϕR(s))

1 − γ
+ C − ρϕR(s)

)
− m (A.145)

= −(1 − π) + γ
π − π − m + C − ρϕR(s)

1 − γ
− m (A.146)

TS(s, e) = π + γ
π − π − m + C − ρϕR(s)

1 − γ
− m. (A.147)

Proof of Proposition 9. The optimal contract maximizes expected buyer utility (4) subject to the

CCP’s budget constraints (3) and (20), and the participation constraint (22) and resource con-

straints of safe sellers (9) and (10) and that of fragile sellers (29). Therefore, the partial derivative

of the Lagrangian with respect to TB(s̃, ẽ), TS(s̃, ẽ), and α, respectively, are

[∂TB(s̃, ẽ)] − P(s̃, ẽ)u′(s̃, ẽ) + η(s̃, ẽ) (A.148)

[∂TS(s, ẽ)] η(s, ẽ)− ξP(s, ẽ) (A.149)

[∂TS(s, e)] η(s, e)(1 − γP(e | s))− η(s, e)γP(e | s)− ξP(s, e)(1 − γ)− σS,2(s, e) (A.150)

[∂TS(s, e)] η(s, e)(1 − γP(e | s))− η(s, e)γP(e | s)− ξP(s, e)(1 − γ)− σS,2(s, e) (A.151)

[∂α] − ξP(s)(1 − γ)(1 − k)R(s) + σF,1 − (σS,2(s, e) + σS,2(s, e))(1 − k)R(s), (A.152)

An interior solution satisfies the conditions with equality. We assume that the resource constraints

of safe sellers after a negative signal are not binding and, thus, σS,2(s, ẽ) ≡ 0.

Margin An interior solution for the margin has (A.152) equal to zero:

ξP(s)(1 − γ)(1 − k)R(s) = σF,1, (A.153)

which, given the binding participation constraint ξ > 0 implies that σF,1 > 0. Therefore, the

optimal margin is given by α∗ = ϕ.
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Risk sharing Combining (A.150) and (A.151) yields

1
P(s, e)

(
η(s, e)(1 − γP(e | s))− η(s, e)γP(e | s)− ξP(s, e)(1 − γ)

)
− 1

P(s, e)

(
η(s, e)(1 − γP(e | s))− η(s, e)γP(e | s)− ξP(s, e)(1 − γ)

)
(A.154)

=
η(s, e)
P(s, e)

− γ
η(s, e) + η(s, e)

P(s)
− ξ(1 − γ)−

(
η(s, e)
P(s, e)

− γ
η(s, e) + η(s, e)

P(s)
− ξ(1 − γ)

)
(A.155)

=
η(s, e)
P(s, e)

− η(s, e)
P(s, e)

(A.156)

=u′(s, e)− u′(s, e) = 0, (A.157)

where in the last step we use (A.148). Therefore, u′(s, e) = u′(s, e). (A.149) together with (A.148)

imply that ξ = u′(s, e) = u′(s, e). Using this in (A.151) and setting it to zero yields

u′(s, e)P(s, e)(1 − γP(e | s))− u′(s, e)P(s, e)γP(e | s)− u′(s, e)P(s, e)(1 − γ) (A.158)

= u′(s, e)P(s, e)(1 − γP(e | s))− u′(s, e)γP(s, e)P(e | s)− u′(s, e)P(s, e)(1 − γ) (A.159)

= u′(s, e)P(s, e)(1 − γP(e | s))− u′(s, e)γP(e | s)P(s, e)− u′(s, e)P(s, e)(1 − γ) (A.160)

= u′(s, e)P(s, e)[1 − γP(e | s)− γP(e | s)]− u′(s, e)P(s, e)(1 − γ) (A.161)

= u′(s, e)P(s, e)(1 − γ)− u′(s, e)P(s, e)(1 − γ) (A.162)

= 0, (A.163)

which is equivalent to u′(s, e) = u′(s, e) and, thus, u′(s̃, ẽ) ≡ ξ, i.e., buyers are fully insured. Thus,

the optimal contract has the transfers from Proposition 8.

Defaults of fragile sellers For any margin α > ϕ, resources of fragile sellers are not sufficient

after a negative signal at t = 1, which induces them to default.

No defaults of safe seller Because α∗ = ϕ < 1, the resource constraint (9) for safe sellers at

t = 1 is satisfied and, thus, safe sellers do not default at t = 1.

The optimal transfers satisfy TS(s, e) > TS(s, e). Therefore, to satisfy the resource constraint
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(10) in both states (s, e) and (s, e), it is necessary and sufficient that

TS(s, e) ≤ R(s)− (1 − k)αR(s) (A.164)

⇔π + γ
π − π − m + C − ρϕR(s)

1 − γ
− m ≤ R(s)− (1 − k)αR(s) (A.165)

⇔(1 − γ)π + γ(π − π − m + C − ρϕR(s))

− (1 − γ)m ≤ (1 − γ)R(s)− (1 − γ)(1 − k)αR(s) (A.166)

⇔π + γ(R(s)(1 − (1 − k)α)− π + C − ρϕR(s))

− m ≤ R(s)− (1 − k)αR(s) (A.167)

⇔π + γ(R(s)(1 − (1 − k)α)− π + C − ρϕR(s))

− P(s)(γC + γ(1 − ρ)ϕR(s) + (1 − γ)(1 − k)αR(s)) ≤ R(s)− (1 − k)αR(s) (A.168)

⇔π + γ[R(s)− P(s)(1 − k)αR(s)− π + P(s)C − (ρ + P(s)(1 − ρ))ϕR(s)]

≤ R(s)− P(s)(1 − k)αR(s) (A.169)

⇔γ ≤ R(s)− P(s)(1 − k)αR(s)− π

R(s)− P(s)(1 − k)αR(s)− π − (ρ + P(s)(1 − ρ))ϕR(s) + P(s)C
=: γR, (A.170)

using that m = P(s)(γC + γ(1 − ρ)ϕR(s) + (1 − γ)(1 − k)αR(s)). The numerator is strictly posi-

tive if, and only if,

R(s) > P(s)(1 − k)ϕR(s) + π (A.171)

⇔ϕ <
R(s)− π

P(s)(1 − k)R(s)
=: ϕ∗, (A.172)

which is the condition for the resource constraint being satisfied for γ = 0. Therefore, due to

R(s) > π by assumption, the numerator is positive for all ϕ < ϕ∗ with ϕ∗ > 0.

The denominator of γR is strictly positive if, and only if,

R(s)− P(s)(1 − k)αR(s)− π − (ρ + P(s)(1 − ρ))ϕR(s) + P(s)C > 0 (A.173)

⇔ R(s)− P(s)(1 − k)ϕR(s)− π + P(s)C > (ρ + P(s)(1 − ρ))ϕR(s) (A.174)

⇔ R(s)− π + P(s)C > (ρ + P(s)(1 − ρ) + P(s)(1 − k))ϕR(s), (A.175)

using α = ϕ. Assuming that the numerator is strictly positive, a sufficient condition is that

P(s)(1 − k)ϕR(s) + π − π + P(s)C > (ρ + P(s)(1 − ρ) + P(s)(1 − k))ϕR(s) (A.176)

⇔ π − π + P(s)C > (ρ + P(s)(1 − ρ))ϕR(s) (A.177)

⇔ π − π + P(s)C
(ρ + P(s)(1 − ρ))R(s)

> ϕ, (A.178)
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which holds for all C ≥ 0 if

ϕ <
π − π

(ρ + P(s)(1 − ρ))R(s)
=: ϕ∗∗. (A.179)

Therefore, a sufficient condition for both the numerator and denominator to be positive is that

ϕ < min{ϕ∗, ϕ∗∗} =: ϕR.

Moreover, it is

γR < 1 (A.180)

⇔ R(s)− P(s)(1 − k)αR(s)− π < R(s)− P(s)(1 − k)αR(s)− π

− (ρ + P(s)(1 − ρ))ϕR(s) + P(s)C (A.181)

⇔ π − π + P(s)C > (ρ + P(s)(1 − ρ))ϕR(s), (A.182)

which is satisfied if ϕ < ϕR.

Finally, safe sellers do not default at t = 1 if, and only if, α ≤ 1, which holds because α∗ = ϕ <

1.

Outsiders Outsiders have assets that pay RO at t = 2 and make payments TS − p. Thus, their

resources are sufficient to make payments on the derivative contract if, and only if,

TS(s, e)− p ≤ RO (A.183)

⇔ TS(s, e)− E[TS | s] ≤ RO (A.184)

⇔ π − m + γ(E[TS | s] + C − ρϕR(s))− E[TS | s] ≤ RO (A.185)

⇔ π − m + γ(C − ρϕR(s))− (1 − γ)E[TS | s] ≤ RO (A.186)

⇔ π − m + γ(C − ρϕR(s))− (1 − γ)
π − π − m + γ(C − ρϕR(s))

1 − γ
≤ RO (A.187)

⇔ π − m + γ(C − ρϕR(s))− (π − π − m + γ(C − ρϕR(s))) ≤ RO (A.188)

⇔ π ≤ RO. (A.189)

Thus, using π > π, it is sufficient that RO ≥ π.

Proof of Proposition 10.

47



(1) Using Propositions 5 and 9, it is (using α = ϕ)

γNR < γR (A.190)

⇔ R(s)− π

R(s)
<

R(s)− P(s)(1 − k)αR(s)− π

R(s)− P(s)(1 − k)αR(s)− π − (ρ + P(s)(1 − ρ))ϕR(s) + P(s)C
(A.191)

⇔ (R(s)− π)
(

R(s)− P(s)(1 − k)αR(s)− π + π − π − (ρ + P(s)(1 − ρ))ϕR(s)

+ P(s)C
)
< R(s)(R(s)− P(s)(1 − k)ϕR(s)− π) (A.192)

⇔ (R(s)− π)(π − π − (ρ + P(s)(1 − ρ))ϕR(s) + P(s)C)

< π(R(s)− P(s)(1 − k)ϕR(s)− π). (A.193)

Due to Assumption 3, for all C ≥ 0 it holds that

π − π − (ρ + P(s)(1 − ρ))ϕR(s) + P(s)C > 0 (A.194)

and (using α = ϕ)

R(s)− P(s)(1 − k)ϕR(s)− π > 0. (A.195)

Because (1 − k)ϕ ≥ 0, it is sufficient that (using that R(s) > π)

(R(s)− π)(π − π − (ρ + P(s)(1 − ρ))ϕR(s) + P(s)C) < π(R(s)− π) (A.196)

⇔ (R(s)− π)(−π − (ρ + P(s)(1 − ρ))ϕR(s) + P(s)C) < 0 (A.197)

⇔ − π − (ρ + P(s)(1 − ρ))ϕR(s) + P(s)C < 0 (A.198)

⇔ C <
π + (ρ + P(s)(1 − ρ))ϕR(s)

P(s)
=: Ĉ. (A.199)

If γ > γNR, then Proposition 6 implies that the optimal contract without replacement provides

less than full insurance to buyers, with expected utility

E[u(ẽ − TB)] = u(E[ẽ]− mNR − gNR), (A.200)

where mNR = E[TB] is the markup of that contract and gNR > 0 is the risk premium for the

remaining consumption risk ẽ − TB.

If γ ≤ γR, then Proposition 9 implies that the optimal contract with replacement provides full

insurance, with expected utility

E[u(ẽ − TB)] = u(E[ẽ]− mR), (A.201)

where mR = E[TB] is the markup of that contract.
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Therefore, replacement is efficient if, and only if,

u(E[ẽ]− mNR − gNR) ≤ u(E[ẽ]− mR) (A.202)

⇔mR − mNR ≤ gNR. (A.203)

Proof of Example 1. Consider the full-insurance contract with replacement when ϕ = 0 and C = 0.

Then,

γR =
R(s)− π

R(s)− π
, (A.204)

and γNR =
R(s)− π

R(s)
. (A.205)

Note that γNR < γR < 1.

Because γ ≤ γR, the optimal contract with replacement provides full insurance. Denote by

mR = P(s)(γC + γ(1 − ρ)ϕR(s) + (1 − γ)(1 − k)ϕR(s)) the markup of this contract. It is equal to

mR = 0 for ϕ = 0 and C = 0.

Because γ > γNR, the optimal contract without replacement provides partial insurance. The

markup of this contract is either equal to mNR
wo = 0 in the case without defaults at t = 2 or equal to

mNR
w = P(s)(1 − k)αR ≥ 0 in the case of defaults at t = 2.

Thus, the contract with replacement implements strictly more risk sharing and has a (weakly)

lower markup mR = 0 ≤ min{mNR
wo , mNR

w }. Thus, it dominates the optimal contract without

replacement.

The following lemma will be useful for the remaining proof:

Lemma 1. The conditional probability of the good endowment state after a low signal is decreasing with
the informativeness of the signal: ∂π

∂λ < 0.

Proof. It is

∂π

∂λ
=

∂

∂λ

(1 − λ)π

(1 − λ)π + λ(1 − π)
(A.206)

=
−π((1 − λ)π + λ(1 − π))− (1 − λ)π(1 − 2π)

((1 − λ)π + λ(1 − π))2 (A.207)

= π
−(1 − λ)π − λ(1 − π) + 2(1 − λ)π − (1 − λ)

((1 − λ)π + λ(1 − π))2 (A.208)

= π
−λ + πλ + π − λπ − 1 + λ

((1 − λ)π + λ(1 − π))2 (A.209)

= −π
1 − π

((1 − λ)π + λ(1 − π))2 < 0. (A.210)
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Proof of Proposition 11. γR is decreasing with λ as

∂γR

∂λ
(A.211)

=
∂

∂λ

R(s)− P(s)(1 − k)αR(s)− π

R(s)− P(s)(1 − k)αR(s)− π − (ρ + P(s)(1 − ρ))ϕR(s) + P(s)C
(A.212)

=
∂π

∂λ

∂

∂π

R(s)− P(s)(1 − k)αR(s)− π

R(s)− P(s)(1 − k)αR(s)− π − (ρ + P(s)(1 − ρ))ϕR(s) + P(s)C
(A.213)

=
∂π

∂λ︸︷︷︸
<0

∂

∂π

−(−1)(R(s)− P(s)(1 − k)αR(s)− π)

(R(s)− P(s)(1 − k)αR(s)− π − (ρ + P(s)(1 − ρ))ϕR(s) + P(s)C)2︸ ︷︷ ︸
>0

, (A.214)

using Proposition 1 and that Assumption 3 implies that R(s) > P(s)(1 − k)αR(s) + π.

Then, the statement follows from the fact that γNR is independent of λ.
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